A buffer solution contains an equivalent amount of acid and base. The pH of the solution with an acid dissociation constant (pKa) value of 3.75 is 3.82.
<h3>What is pH?</h3>
The amount of hydrogen or the proton ion in the solution is expressed by the pH. It is given by the sum of pKa and the log of the concentration of acid and bases.
Given,
Concentration of salt [HCOO⁻] = 0.24 M
Concentration of acid [HCOOH] = 0.20 M
The acid dissociation constant (pKa) = 3.75
pH is calculated from the Hendersons equation as,
pH = pKa + log [salt] ÷ [acid]
pH = 3.75 + log [0.24] ÷ [0.20]
= 3.75 + log (1.2)
= 3.75 + 0.079
= 3.82
Therefore, 3.82 is the pH of the buffer.
Learn more about pH here:
brainly.com/question/27181245
#SPJ4
Ocean water freezes just like freshwater, but at Lower temperature. Fresh water freezes At 32°F but see water freezes at about 28.4°F because of the salt in it it can be melted down to use as drinking water
Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.