Answer:
a) v = 5.59x10³ m/s
b) T = 4 h
c) F = 1.92x10³ N
Explanation:
a) We can find the satellite's orbital speed by equating the centripetal force and the gravitation force as follows:


Where:
g is the gravity = 9.81 m/s²
r: is the Earth's radius = 6371 km
h: is the satellite's height = r = 6371 km
b) The period of its revolution is:
c) The gravitational force acting on it is given by:

Where:
M is the Earth's mass = 5.97x10²⁴ kg
m is the satellite's mass = 782 kg
G is the gravitational constant = 6.67x10⁻¹¹ Nm²kg⁻²

I hope it helps you!
Answer:
r=0.127
Explanation:
When connected in series
Current = I
When connected in parallel
Current = 10 I
We know that equivalent resistance
In series R = R₁+R₂
in parallel R= R₁R₂/(R₂+ R₁)
Given that voltage is constant (Vo)
V = I R
Vo = I (R₁+R₂) ------------1
Vo = 10 I (R₁R₂/(R₂+ R₁)) -------2
From above equations
10 I (R₁R₂/(R₂+ R₁)) = I (R₁+R₂)
10 R₁R₂ = (R₁+R₂) (R₂+ R₁)
10 R₁R₂ = 2 R₁R₂ + R₁² + R₂²
8 R₁R₂ = R₁² + R₂²
Given that
r = R₁/R₂
Divides by R₂²
8R₁/R₂ = ( R₁/R₂)²+ 1
8 r = r ² + 1
r ² - 8 r+ 1 =0
r= 0.127 and r= 7.87
But given that R₂>R₁ It means that r<1 only.
So the answer is r=0.127
Answer:
0.25 cm³.
Explanation:
We shall apply Boyle's law to find the solution . According to it
PV = constant where P is pressure and V is volume of the gas.
P₁ V₁ = P₂V₂
1 x .5 = 2 x V₂
V₂ = 0.25 cm³.
Each point along the track of one solar mass star represents the star's surface temperature and luminosity at one time.
<h3>What is the one-solar mass star?</h3>
A star having a mass equal to the mass of the Sun is called a one-solar mass star.
Its life track shows the luminous intensity as well as the surface temperature.
Learn more about one-solar mass star.
brainly.com/question/14984575
#SPJ1