Answer:
29.4m/s
Explanation:
Given parameters:
Time = 3s
Unknown:
Average velocity = ?
Solution:
To solve this problem, we use the expression below:
v = u + gt
v is the average velocity
u is the initial velocity = 0m/s
g is the acceleration due to gravity = 9.8m/s²
t is the time
So;
v = 0 + (9.8 x 3) = 29.4m/s
Answer:
Explanation:
The magnetic force acting horizontally will deflect the wire by angle φ from the vertical
Let T be the tension
T cosφ = mg
Tsinφ = Magnetic force
Tsinφ = BiL , where B is magnetic field , i is current and L is length of wire
Dividing
Tanφ = BiL / mg
= .055 x 29 x .11 / .010 x 9.8
= 1.79
φ = 61° .
Tension T = mg / cosφ
= .01 x 9.8 / cos61
= .2 N .
The work done will be equal to the potential energy of the piano at the final position
P.E=m.g.h
.consider the plank the hypotenuse of the right triangle formed with the ground
.let x be the angle with the ground=31.6°
.h be the side opposite to the angle x (h is the final height of the piano)
.let L be the length of the plank
sinx=opposite side / hypotenuse
= h/L
then h=L.sinx=3.49×sin31.6°=0.638m
weight w=m.g
m=w/g=3858/10=385.8kg
Consider Gravity g=10m/s2
then P.E.=m.g.h=385.8kg×10×0.638=2461.404J
then Work W=P.E.=2451.404J