Answer:
Explanation:required formula is
W 1=F*S
W1=work done by Sam =?
F=force applied by sam=150N
S=displacement =10m
again
W2=F*S
W2=work done by friction =?
S=displacement =10m
F=friction =25N
W=W1-W2=net work done
please feel free to ask if you have any questions
Answer:
(a)
(b) It won't hit
(c) 110 m
Explanation:
(a) the car velocity is the initial velocity (at rest so 0) plus product of acceleration and time t1

(b) The velocity of the car before the driver begins braking is

The driver brakes hard and come to rest for t2 = 5s. This means the deceleration of the driver during braking process is

We can use the following equation of motion to calculate how far the car has travel since braking to stop


Also the distance from start to where the driver starts braking is

So the total distance from rest to stop is 352 + 88 = 440 m < 550 m so the car won't hit the limb
(c) The distance from the limb to where the car stops is 550 - 440 = 110 m
Answer:
<em>18808.7 m/s^2</em>
Explanation:
Given
Length of the pendulum L = 1.44 m
Number of complete cycles of oscillation n = 1.10 x 10^2
total time of oscillation t = 2.00 x 10^2 s
The period of the T = n/t
T = (1.10 x 10^2)/(2.00 x 10^2) = 0.55 ^-s
The period of a pendulum is gotten as
T = 
where g is the acceleration due to gravity
substituting values, we have
0.55 = 
0.0875 = 
squaring both sides of the equation, we have
7.656 x 10^-3 = 144/g
g = 144/(7.656 x 10^-3) = <em>18808.7 m/s^2</em>