Answer:
A. 1.5 cm by 2.5 cm
B. 27 cm by 45 cm
C. 9 cm by 15 cm
D. 30 cm by 50 cm
Step-by-step explanation:
The dimensions of the original painting = 12 cm by 20 cm painting
Hence, the proportion is:
12/20 = 0.6
Hence, we compare the options given in the question.
A. 1.5 cm by 2.5 cm
= 1.5/2.5 = 0.6 , option A is correct
B. 27 cm by 45 cm
27cm/45 cm = 0.6 Option B is correct
C. 9 cm by 15 cm
9cm/15cm = 0.6 , Option C is correct
D. 30 cm by 50 cm
30 cm /50 cm = 0.6 Option D is correct
E. 6 cm by 14 cm
6cm/14 cm = 0.4285714286
Option E is not correct
Therefore, Options A to D are the correct options
Answer:
x = 4
Step-by-step explanation:
5x-50=30-15x
5x +15x =30+50
20x= 80
Divide both sides of the equation by 20
x = 4
I hope it helps
1a) 8 / (1/2) = 16 * 3 = 48
1b) 3sqrt(49) = 3 * 7 = 21
1c) (5+2)(-8) / (-2)^3 -3
(7*-8) / (-8 -3)
-56/-11
56/11
Answer:
![\dfrac{\sqrt{40}\cdot \sqrt{40}}{2}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B40%7D%7D%7B2%7D)
Step-by-step explanation:
The length of the base is the distance between the points 4+2i and 10+4i, so
![\text{Base}=|10+4i-(4+2i)|=|10+4i-4-2i|=|6+2i|=\sqrt{6^2+2^2}=\\ \\=\sqrt{36+4}=\sqrt{40}](https://tex.z-dn.net/?f=%5Ctext%7BBase%7D%3D%7C10%2B4i-%284%2B2i%29%7C%3D%7C10%2B4i-4-2i%7C%3D%7C6%2B2i%7C%3D%5Csqrt%7B6%5E2%2B2%5E2%7D%3D%5C%5C%20%5C%5C%3D%5Csqrt%7B36%2B4%7D%3D%5Csqrt%7B40%7D)
The middle point of the base is placed at point
![\dfrac{4+2i+10+4i}{2}=\dfrac{6i+14}{2}=7+3i](https://tex.z-dn.net/?f=%5Cdfrac%7B4%2B2i%2B10%2B4i%7D%7B2%7D%3D%5Cdfrac%7B6i%2B14%7D%7B2%7D%3D7%2B3i)
The length of the height is the distance between the points 5+9i and 7+3i
![\text{Height}=|5+9i-(7+3i)|=|5+9i-7-3i|=|-2+6i|=\sqrt{(-2)^2+6^2}=\\ \\=\sqrt{4+36}=\sqrt{40}](https://tex.z-dn.net/?f=%5Ctext%7BHeight%7D%3D%7C5%2B9i-%287%2B3i%29%7C%3D%7C5%2B9i-7-3i%7C%3D%7C-2%2B6i%7C%3D%5Csqrt%7B%28-2%29%5E2%2B6%5E2%7D%3D%5C%5C%20%5C%5C%3D%5Csqrt%7B4%2B36%7D%3D%5Csqrt%7B40%7D)
So, the area of the triangle is
![A=\dfrac{1}{2}\cdot \text{Base}\cdot \text{Height}=\dfrac{\sqrt{40}\cdot \sqrt{40}}{2}](https://tex.z-dn.net/?f=A%3D%5Cdfrac%7B1%7D%7B2%7D%5Ccdot%20%5Ctext%7BBase%7D%5Ccdot%20%5Ctext%7BHeight%7D%3D%5Cdfrac%7B%5Csqrt%7B40%7D%5Ccdot%20%5Csqrt%7B40%7D%7D%7B2%7D)
Answer:
The projected enrollment is ![\lim_{t \to \infty} E(t)=10,000](https://tex.z-dn.net/?f=%5Clim_%7Bt%20%5Cto%20%5Cinfty%7D%20E%28t%29%3D10%2C000)
Step-by-step explanation:
Consider the provided projected rate.
![E'(t) = 12000(t + 9)^{\frac{-3}{2}}](https://tex.z-dn.net/?f=E%27%28t%29%20%3D%2012000%28t%20%2B%209%29%5E%7B%5Cfrac%7B-3%7D%7B2%7D%7D)
Integrate the above function.
![E(t) =\int 12000(t + 9)^{\frac{-3}{2}}dt](https://tex.z-dn.net/?f=E%28t%29%20%3D%5Cint%2012000%28t%20%2B%209%29%5E%7B%5Cfrac%7B-3%7D%7B2%7D%7Ddt)
![E(t) =-\frac{24000}{\left(t+9\right)^{\frac{1}{2}}}+c](https://tex.z-dn.net/?f=E%28t%29%20%3D-%5Cfrac%7B24000%7D%7B%5Cleft%28t%2B9%5Cright%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%2Bc)
The initial enrollment is 2000, that means at t=0 the value of E(t)=2000.
![2000=-\frac{24000}{\left(0+9\right)^{\frac{1}{2}}}+c](https://tex.z-dn.net/?f=2000%3D-%5Cfrac%7B24000%7D%7B%5Cleft%280%2B9%5Cright%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%2Bc)
![2000=-\frac{24000}{3}+c](https://tex.z-dn.net/?f=2000%3D-%5Cfrac%7B24000%7D%7B3%7D%2Bc)
![2000=-8000+c](https://tex.z-dn.net/?f=2000%3D-8000%2Bc)
![c=10,000](https://tex.z-dn.net/?f=c%3D10%2C000)
Therefore,
Now we need to find ![\lim_{t \to \infty} E(t)](https://tex.z-dn.net/?f=%5Clim_%7Bt%20%5Cto%20%5Cinfty%7D%20E%28t%29)
![\lim_{t \to \infty} E(t)=-\frac{24000}{\left(t+9\right)^{\frac{1}{2}}}+10,000](https://tex.z-dn.net/?f=%5Clim_%7Bt%20%5Cto%20%5Cinfty%7D%20E%28t%29%3D-%5Cfrac%7B24000%7D%7B%5Cleft%28t%2B9%5Cright%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%2B10%2C000)
![\lim_{t \to \infty} E(t)=10,000](https://tex.z-dn.net/?f=%5Clim_%7Bt%20%5Cto%20%5Cinfty%7D%20E%28t%29%3D10%2C000)
Hence, the projected enrollment is ![\lim_{t \to \infty} E(t)=10,000](https://tex.z-dn.net/?f=%5Clim_%7Bt%20%5Cto%20%5Cinfty%7D%20E%28t%29%3D10%2C000)