1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
9

53,60070001 +624-7646÷7000+1,000,000,000,000-5000 million subtracted by 12+ 1,225,000 50 million trillion divided by one quadril

lion divided by 0÷1 equals what
Mathematics
1 answer:
Iteru [2.4K]3 years ago
8 0

Answer:

Solution not exists.

Step-by-step explanation:

  Since in a certain step a certain amount divided by zero, an that stage the quentity is undefined. That is if,

\frac{5360070001+624-7646}{7000+1000000000-5000,000,000}-12+122500050,000,000,000,000,000,000=X

Then, at the next stage, \frac{X}{0} is not exists, wheather after it divided by 1 or not. Thus required solution is not exists.

You might be interested in
What is the mean of this discrete random variable? That is, what is EP), the expected value of X? O A. 32.63 O B. 31.47 O C. 29.
kkurt [141]

According to this formula, we take each observed X value and multiply it by its respective probability. We then add these products to reach our expected value. You may have seen this before referred to as a weighted average. It is known as a weighted average because it takes into account the probability of each outcome and weighs it accordingly. This is in contrast to an unweighted average which would not take into account the probability of each outcome and weigh each possibility equally.

Let's look at a few examples of expected values for a discrete random variable:

Example

 

A fair six-sided die is tossed. You win $2 if the result is a “1,” you win $1 if the result is a “6,” but otherwise you lose $1.

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span><span>E(X)=$2(<span>16</span>)+$1(<span>16</span>)+(−$1)(<span>46</span>)=$<span><span>−1</span>6</span>=−$0.17</span></span>

The interpretation is that if you play many times, the average outcome is losing 17 cents per play. Thus, over time you should expect to lose money.

 

Example

 

Using the probability distribution for number of tattoos, let's find the mean number of tattoos per student.

<span>Probabilty Distribution for Number of Tattoos Each Student Has in a Population of Students<span><span>Tattoos01234</span><span>Probability.850.120.015.010.005</span></span></span>

<span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span><span>E(X)=0(.85)+1(.12)+2(.015)+3(.010)+4(.005)=.20</span></span>

The mean number of tattoos per student is .20.

 

Symbols for Population Parameters

Recall from Lesson 3, in a sample, the mean is symbolized by <span><span>x<span>¯¯¯</span></span><span>x¯</span></span> and the standard deviation by <span>ss</span>. Because the probabilities that we are working with here are computed using the population, they are symbolized using lower case Greek letters. The population mean is symbolized by <span>μμ</span> (lower case "mu") and the population standard deviation by <span>σσ</span>(lower case "sigma").

<span><span> Sample StatisticPopulation Parameter</span><span>Mean<span><span>x<span>¯¯¯</span></span><span>x¯</span></span><span>μμ</span></span><span>Variance<span><span>s2</span><span>s2</span></span><span><span>σ2</span><span>σ2</span></span></span><span>Standard Deviation<span>ss</span><span>σσ</span></span></span>

Also recall that the standard deviation is equal to the square root of the variance. Thus, <span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

Standard Deviation of a Discrete Random Variable

Knowing the expected value is not the only important characteristic one may want to know about a set of discrete numbers: one may also need to know the spread, or variability, of these data. For instance, you may "expect" to win $20 when playing a particular game (which appears good!), but the spread for this might be from losing $20 to winning $60. Knowing such information can influence you decision on whether to play.

To calculate the standard deviation we first must calculate the variance. From the variance, we take the square root and this provides us the standard deviation. Conceptually, the variance of a discrete random variable is the sum of the difference between each value and the mean times the probility of obtaining that value, as seen in the conceptual formulas below:

Conceptual Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span><span><span>σ2</span>=∑[(<span>xi</span>−μ<span>)2</span><span>pi</span>]</span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span><span>−−−−−−−−−−−</span>√</span>]</span><span>σ=<span>∑[(<span>xi</span>−μ<span>)2</span><span>pi</span></span>]</span></span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

In these expressions we substitute our result for E(X) into <span>μμ</span> because <span>μμ</span> is the symbol used to represent the mean of a population .

However, there is an easier computational formula. The compuational formula will give you the same result as the conceptual formula above, but the calculations are simplier.

Computational Formulas

Variance for a Discrete Random Variable

<span><span><span>σ2</span>=[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span><span>σ2</span>=[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span>

Standard Deviation for a Discrete Random Variable

<span><span>σ=<span><span>[∑(<span>x2i</span><span>pi</span>)]−<span>μ2</span></span><span>−−−−−−−−−−−−</span>√</span></span><span>σ=<span>[∑(<span>xi2</span><span>pi</span>)]−<span>μ2</span></span></span></span><span> 
</span>

<span><span>xi</span><span>xi</span></span>= value of the i<span>th </span>outcome
<span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span><span>μ=E(X)=∑<span>xi</span><span>pi</span></span></span>
<span><span>pi</span><span>pi</span></span> = probability of the ith outcome

Notice in the summation part of this equation that we only square each observed X value and not the respective probability. Also note that the <span>μμ</span> is outside of the summation.

Example

Going back to the first example used above for expectation involving the dice game, we would calculate the standard deviation for this discrete distribution by first calculating the variance:

<span>The Probability Distribution for X = Amount Won or Lost<span><span>X+$2+$1-$1</span><span>Probability1/61/64/6</span></span></span>

<span><span><span>σ2</span>=[∑<span>x2i</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span><span><span>σ2</span>=[∑<span>xi2</span><span>pi</span>]−<span>μ2</span>=[<span>22</span>(<span>16</span>)+<span>12</span>(<span>16</span>)+(−1<span>)2</span>(<span>46</span>)]−(−<span>16</span><span>)2</span></span></span>

<span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span><span>=[<span>46</span>+<span>16</span>+<span>46</span>]−<span>136</span>=<span>5336</span>=1.472</span></span>

The variance of this discrete random variable is 1.472.

<span><span>σ=<span><span>(<span>σ2</span>)</span><span>−−−−</span>√</span></span><span>σ=<span>(<span>σ2</span>)</span></span></span>

<span><span>σ=<span>1.472<span>−−−−</span>√</span>=1.213</span><span>σ=1.472=1.213</span></span>

The standard deviation of this discrete random vairable is 1.213. hope this helps

7 0
3 years ago
Read 2 more answers
Suppose that you ask three friends to go to the mall. each one has a 0.80 chance of saying yes. what is the probability that at
Alexxx [7]
De acordo com meus cálculos 2.40
5 0
3 years ago
1 Round the number 5.014937 to the nearest hundredth.
e-lub [12.9K]
Your answer would be 5.01 because to round to the hundredths means two decimal points meaning 5.014. The 4 is not more than 5 so it wouldn’t make the 1 move up. So it stays 5.01.
5 0
3 years ago
Exponent Rules Practice<br> Multiplication<br> Part 1: Simplity each expression.<br> 1.) 23. 24
9966 [12]

Answer:

2^7.

Step-by-step explanation:

2^3 * 2^4

= 2^(3+4)

= 2^7.

3 0
3 years ago
Can u help me with this
valentina_108 [34]

Answer:

1/500 = 0.002, 2 and 6/10 = 2.6, 3 and 2/25 = 308%, 0.0025 = 25%

Step-by-step explanation:

4 0
3 years ago
Other questions:
  • I need help so answer it
    12·1 answer
  • How do you do this problem?
    8·1 answer
  • - If your federal tax rate was 12% and you make $650 per week how
    7·1 answer
  • F(x)=x+2,translation 2 units right
    15·1 answer
  • 18/40 reduced to simplest form?
    8·2 answers
  • you work for a telecommunications company and need to analyze the outcome of a proposed new cell tower project. cell phone radio
    14·1 answer
  • Help me ????????????
    12·2 answers
  • The domain of the natural logarithmic function is the set of
    14·1 answer
  • The castle's gate is open 18 hours a day and must be guarded. Five knights are ordered to split each day’s guard duty equally. H
    9·1 answer
  • You want to send your sweetheart flowers for Valentine’s Day. You called two different florists to find out how much they charge
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!