Answer:
Acidity
Explanation:
pH measures how acidic or basic a substance is.
3. In a uniform electric field, the equation for the magnitude of the magnetic field is E=(V/d). V= voltage d= distance. If the magnetic field magnitude is
constant , as stated in your problem, then the voltage must stay the same otherwise the value of "E" would change". And the problem already told us the "E" is uniform and so, not changing. Does that make sense?
4a. If the magnetic field lines are equally spaced apart, in other words share the same
density. Then we know that the magnitude of the magnetic field is unchanging. This is because the density of of the magnetic field lines(how many are in a certain area) is related to the magnitude being expressed by the electric field. Greater magnitude is expressed by the presence of more lines (higher line density)
4b. The electric potential is measured in Volts(V) and is uniform along the same equipotential line. What is an equipotential line(gray)? It is a line drawn perpendicular(forms a right angle with) to the magnetic field lines(black) to show the changes in electric potential. One space where electric potential will always be the same because it will always be equal to 0 Volts is exactly in between a positive and negative charges of equal charge value I have pointed to this line with a purple arrow in my picture.
I really hope this makes sense to you and that my pictures help! :)
To solve this problem it is necessary to apply the concepts related to Newton's second Law and the force of friction. According to Newton, the Force is defined as
F = ma
Where,
m= Mass
a = Acceleration
At the same time the frictional force can be defined as,

Where,
Frictional coefficient
N = Normal force (mass*gravity)
Our values are given as,

By condition of Balance the friction force must be equal to the total net force, that is to say



Re-arrange to find acceleration,



Therefore the acceleration the horse can give is 
micrometer is used to measure the diameter of a thin wire
Answer:
I think is B but I'm not sure