Answer:
Disruption to electricity power grid
Explanation:
We're looking a a solar flare. This will whip solar particles at high velocity into space and, If they are near earth, will interact with the earth's magnetic field. These magnetic changes will be measurable in the electric grid. Whether they are strong enough to cause "disruption" depends on a huge number of factors such as strength of and angles of the interacting magnetic fields and location of grid infrastructure,
Answer:
Lorsque l'on détend l'air son volume augmente et sa pression diminue. L'air qui est un mélange de gaz est compressible et expansible. – Lorsque l'on comprime l'air, son volume diminue et sa pression augmente. – Lorsque l'on détend l'air, son volume augmente et sa pression diminue.
Answer:
15.3 s and 332 m
Explanation:
With the launch of projectiles expressions we can solve this problem, with the acceleration of the moon
gm = 1/6 ge
gm = 1/6 9.8 m/s² = 1.63 m/s²
We calculate the range
R = Vo² sin 2θ / g
R = 25² sin (2 30) / 1.63
R= 332 m
We will calculate the time of flight,
Y = Voy t – ½ g t2
Voy = Vo sin θ
When the ball reaches the end point has the same initial height Y=0
0 = Vo sin t – ½ g t2
0 = 25 sin (30) t – ½ 1.63 t2
0= 12.5 t – 0.815 t2
We solve the equation
0= t ( 12.5 -0.815 t)
t=0 s
t= 15.3 s
The value of zero corresponds to the departure point and the flight time is 15.3 s
Let's calculate the reach on earth
R2 = 25² sin (2 30) / 9.8
R2 = 55.2 m
R/R2 = 332/55.2
R/R2 = 6
Therefore the ball travels a distance six times greater on the moon than on Earth
Complete question:
Consider the hypothetical reaction 4A + 2B → C + 3D
Over an interval of 4.0 s the average rate of change of the concentration of B was measured to be -0.0760 M/s. What is the final concentration of A at the end of this same interval if its concentration was initially 1.600 M?
Answer:
the final concentration of A is 0.992 M.
Explanation:
Given;
time of reaction, t = 4.0 s
rate of change of the concentration of B = -0.0760 M/s
initial concentration of A = 1.600 M
⇒Determine the rate of change of the concentration of A.
From the given reaction: 4A + 2B → C + 3D
2 moles of B ---------------> 4 moles of A
-0.0760 M/s of B -----------> x

⇒Determine the change in concentration of A after 4s;
ΔA = -0.152 M/s x 4s
ΔA = -0.608 M
⇒ Determine the final concentration of A after 4s
A = A₀ + ΔA
A = 1.6 M + (-0.608 M)
A = 1.6 M - 0.608 M
A = 0.992 M
Therefore, the final concentration of A is 0.992 M.
The correct matches are as follows:
<span>1. first nuclear reactor
</span>Fermi - an italian physicist who made the first nuclear reactor<span>
2. </span>1/0 η<span>
</span>atomic mass <span>
3. decaying nuclei
</span>fission<span> - nuclear reaction from a heavy elements to lighter elements
4. number of neutrons and protons
</span>neutron <span>
5. builds heavier elements
</span>fusion - nuclear reaction from two or more elements to a heavier element<span>
6. discovered radioactivity
</span>Curie<span>
7. unit of radiation
</span> Becquerel