Answer:
See explaination
Explanation:
for a reverse carnot cycle T-S diagram is a rectangle which i have shown
net work for a complete cycle must be equal to net heat interaction.
Kindly check attachment for the step by step solution of the given problem.
Answer:
1.2727 stokes
Explanation:
specific gravity of fluid A = 1.65
Dynamic viscosity = 210 centipoise
<u>Calculate the kinematic viscosity of Fluid A </u>
First step : determine the density of fluid A
Pa = Pw * Specific gravity = 1000 * 1.65 = 1650 kg/m^3
next : convert dynamic viscosity to kg/m-s
210 centipoise = 0.21 kg/m-s
Kinetic viscosity of Fluid A = dynamic viscosity / density of fluid A
= 0.21 / 1650 = 1.2727 * 10^-4 m^2/sec
Convert to stokes = 1.2727 stokes
Answer:
The power developed by engine is 167.55 KW
Explanation:
Given that

Mean effective pressure = 6.4 bar
Speed = 2000 rpm
We know that power is the work done per second.
So

We have to notice one point that we divide by 120 instead of 60, because it is a 4 cylinder engine.
P=167.55 KW
So the power developed by engine is 167.55 KW
Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb
Answer:
bts biot bts biot jungkukkk
jungkukkkbiot
Explanation:
bts biot bts biot jungkukkk
jungkukkkbiot