1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
LUCKY_DIMON [66]
3 years ago
10

A skilled worker with the ability to operate computer numerically controlled (CNC) machines is qualified to work in which of the

following jobs?
assembly worker
machinist
semi-conductor technician
engineer
Engineering
1 answer:
KengaRu [80]3 years ago
3 0

Answer:

Machinist

Explanation:

A skilled worker with the ability to operate computer numerically controlled (CNC) machines is qualified to work in a machinist position.

A machinist is a person who is properly skilled and consists of advanced knowledge regarding the functions of a CNC machine. He can use different mechanisms and complex numerical functions of the machine to carry out different tasks. Any person who lacks the official learning of mechanisms cannot operate such machines effectively.

You might be interested in
1. An air standard cycle is executed within a closed piston-cylinder system and consists of three processes as follows:1-2 = con
QveST [7]

Answer:

Explanation: Here it is: 67 Hope that helps! :)

5 0
3 years ago
An Ideal gas is being heated in a circular duct as while flowing over an electric heater of 130 kW. The diameter of duct is 500
max2010maxim [7]

Answer: The exit temperature of the gas in deg C is 32^{o}C.

Explanation:

The given data is as follows.

C_{p} = 1000 J/kg K,   R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)

P_{1} = 100 kPa,     V_{1} = 15 m^{3}/s

T_{1} = 27^{o}C = (27 + 273) K = 300 K

We know that for an ideal gas the mass flow rate will be calculated as follows.

     P_{1}V_{1} = mRT_{1}

or,         m = \frac{P_{1}V_{1}}{RT_{1}}

                = \frac{100 \times 15}{0.5 \times 300}

                = 10 kg/s

Now, according to the steady flow energy equation:

mh_{1} + Q = mh_{2} + W

h_{1} + \frac{Q}{m} = h_{2} + \frac{W}{m}

C_{p}T_{1} - \frac{80}{10} = C_{p}T_{2} - \frac{130}{10}

(T_{2} - T_{1})C_{p} = \frac{130 - 80}{10}

(T_{2} - T_{1}) = 5 K

T_{2} = 5 K + 300 K

T_{2} = 305 K

           = (305 K - 273 K)

           = 32^{o}C

Therefore, we can conclude that the exit temperature of the gas in deg C is 32^{o}C.

7 0
3 years ago
Joe is a chemical engineer whose plant discharges heavy metals into the local river. By the test authorized by the city governme
chubhunter [2.5K]

Answer:

B probably

Explanation:

Because the prompt doesn't specify what sort of violation it could be anything maybe when they release the metals during the day and so on.

5 0
2 years ago
What's the relationship between energy and time<br>​
boyakko [2]

Answer:

The relationship between power, energy, and time can be described by the following equation : P = Δ E s y s Δ t. P is the average power output, measured in watts (W) ΔEsys is the net change in energy of the system in joules (J) - also known as work. Δt is the duration - how long the energy use takes - measured in seconds (s).

Explanation:

8 0
3 years ago
Look at the home page of the Internet Society (www.internetsociety.org) and read about one of the designers of the original ARPA
krek1111 [17]

Answer:

<u>ARPANET is the direct precedent for the Internet, a network that became operational in October 1969 after several years of planning. </u>

Its promoter was DARPA (Defense Advanced Research Projects Agency), a US government agency, dependent on the Department of Defense of that country, which still exists.

Originally, it connected research centers and academic centers to facilitate the exchange of information between them in order to promote research. Yes, being an undertaking of the Department of Defense, it is understood that weapons research also entered into this exchange of information.

It is also explained, without being without foundation, that the design of ARPANET was carried out thinking that it could withstand a nuclear attack by the USSR and, hence, probably the great resistance that the network of networks has shown in the face of major disasters and attacks.

It was the first network in which a packet communication protocol was put into use that did not require central computers, but rather was - as the current Internet is - totally decentralized.

Explanation:

<em><u> Below I present as a summary some of the most relevant aspects exposed on the requested website about the origin and authors of ARPANET:</u></em>

<em><u></u></em>

1. Licklider from MIT in August 1962 thinking about the concept of a "Galactic Network". He envisioned a set of globally interconnected computers through which everyone could quickly access data and programs from anywhere. In spirit, the concept was very much like today's Internet. He became the first head of the computer research program at DARPA, and from October 1962. While at DARPA he convinced his successors at DARPA, Ivan Sutherland, Bob Taylor and MIT researcher Lawrence G. Roberts, of the importance of this network concept.

2.Leonard Kleinrock of MIT published the first article on packet-switching theory in July 1961 and the first book on the subject in 1964. Kleinrock convinced Roberts of the theoretical feasibility of communications using packets rather than circuits, That was an important step on the road to computer networking. The other key step was to get the computers to talk together. To explore this, in 1965, working with Thomas Merrill, Roberts connected the TX-2 computer in Mass. To the Q-32 in California with a low-speed phone line creating the first wide-area (albeit small) computer network built . The result of this experiment was the understanding that timeshare computers could work well together, running programs and retrieving data as needed on the remote machine, but that the circuitry switching system of the phone was totally unsuitable for the job. Kleinrock's conviction of the need to change packages was confirmed.

3.In late 1966 Roberts went to DARPA to develop the concept of a computer network and quickly developed his plan for "ARPANET", and published it in 1967. At the conference where he presented the document, there was also a document on a concept of UK packet network by Donald Davies and Roger Scantlebury of NPL. Scantlebury told Roberts about NPL's work, as well as that of Paul Baran and others at RAND. The RAND group had written a document on packet switched networks for secure voice in the military in 1964. It happened that work at MIT (1961-1967), in RAND (1962-1965) and in NPL (1964-1967) all they proceeded in parallel without any of the investigators knowing about the other work. The word "packet" was adopted from the work in NPL and the proposed line speed to be used in the ARPANET design was updated from 2.4 kbps to 50 kbps.

6 0
3 years ago
Other questions:
  • How does heat conduction differ from convection?
    6·2 answers
  • Engineering Careers Scavenger Hunt
    7·2 answers
  • A car is traveling at sea level at 78 mi/h on a 4% upgrade before the driver sees a fallen tree in the roadway 150 feet away. Th
    7·1 answer
  • WhT DO FILM PRODUTION SAY WHEN REMOVING GREEN AND BLUE SCREENS.
    14·1 answer
  • Please answer question #2
    6·1 answer
  • There have been many attempts to manufacture and market plastic bicycles. All have been too flexible and soft. Which design-limi
    9·1 answer
  • Which of the following best describes the role of engineers
    12·1 answer
  • A Styrofoam cup (k = 0.010 W/(m∙ o C)) has cross-sectional area (A) of 3.0 x 10 −2m 2 . The cup is 0.589 cm thick (L). The tempe
    12·1 answer
  • Why is the reflection step in the engineering process the most important step?
    11·1 answer
  • A blue and a yellow cubes are rolled- What is the probability that a yellow cube is a multiple of 3 and the product is 6?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!