1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
7

Which of these is an example of a service job?

Engineering
1 answer:
Sindrei [870]3 years ago
7 0

Answer:

brainllest if right

A

Explanation:

You might be interested in
Write the following decorators and apply them to a single function (applying multiple decorators to a single function): 1. The f
natita [175]

Answer:

Complete question is:

write the following decorators and apply them to a single function (applying multiple decorators to a single function):

1. The first decorator is called strong and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <strong> and </strong> to the argument of the decorator. The return value of the wrapper should look like: return “<strong>” + func() + “</strong>”

2. The decorator will return the wrapper per usual.

3. The second decorator is called emphasis and has an inner function called wrapper. The purpose of this decorator is to add the html tags of <em> and </em> to the argument of the decorator similar to step 1. The return value of the wrapper should look like: return “<em>” + func() + “</em>.

4. Use the greetings() function in problem 1 as the decorated function that simply prints “Hello”.

5. Apply both decorators (by @ operator to greetings()).

6. Invoke the greetings() function and capture the result.

Code :

def strong_decorator(func):

def func_wrapper(name):

return "<strong>{0}</strong>".format(func(name))

return func_wrapper

def em_decorator(func):

def func_wrapper(name):

return "<em>{0}</em>".format(func(name))

return func_wrapper

@strong_decorator

@em_decorator

def Greetings(name):

return "{0}".format(name)

print(Greetings("Hello"))

Explanation:

5 0
4 years ago
An electrical heater is a form of sensible heating process, and heats 0.1m/s of air from 15°C and 80% RH to 50°C? The barometric
lawyer [7]

Answer:

The heater load =35 KJ/kg

Explanation:

Given that

At initial condition

Temperature= 15°C

RH=80%

At final condition

Temperature= 50°C

We know that in sensible heating process humidity ratio remain constant.

Now from chart

At temperature= 15°C and RH=80%

h_1=38 \frac{KJ}{kg},v=0.8 \frac{m^3}{kg}

At  temperature= 50°C

h_2=73 \frac{KJ}{kg}

So\ the\ heater\ load =h_2-h_1

The heater load = 73 - 38 KJ/kg

The heater load =35 KJ/kg

3 0
3 years ago
A right triangle has a base of 12 inches and a height of 30 inches, what is the centroid of the triangle?​
aliina [53]

Answer:

the correct answer is 42

4 0
3 years ago
You can change lanes during a turn long as there’s no traffic and you driving slowly
Vanyuwa [196]
Your allowed to switch lanes as long as the road is clear and you use signals.
5 0
3 years ago
a) A total charge Q = 23.6 μC is deposited uniformly on the surface of a hollow sphere with radius R = 26.1 cm. Use ε0 = 8.85419
dusya [7]

Answer:

(a) E = 0 N/C

(b) E = 0 N/C

(c) E = 7.78 x10^5 N/C

Explanation:

We are given a hollow sphere with following parameters:

Q = total charge on its surface = 23.6 μC = 23.6 x 10^-6 C

R = radius of sphere = 26.1 cm = 0.261 m

Permittivity of free space = ε0 = 8.85419 X 10−12 C²/Nm²

The formula for the electric field intensity is:

E = (1/4πεo)(Q/r²)

where, r = the distance from center of sphere where the intensity is to be found.

(a)

At the center of the sphere r = 0. Also, there is no charge inside the sphere to produce an electric field. Thus the electric field at center is zero.

<u>E = 0 N/C</u>

(b)

Since, the distance R/2 from center lies inside the sphere. Therefore, the intensity at that point will be zero, due to absence of charge inside the sphere (q = 0 C).

<u>E = 0 N/C</u>

(c)

Since, the distance of 52.2 cm is outside the circle. So, now we use the formula to calculate the Electric Field:

E = (1/4πεo)[(23.6 x 10^-6 C)/(0.522m)²]

<u>E = 7.78 x10^5 N/C</u>

4 0
3 years ago
Other questions:
  • Assume that we have a BS with a 6-dB antenna gain and an MS with antenna gain of 2 dB, at heights 10 m and 1.5 m, respectively,
    5·1 answer
  • Explain the use of remote sensing in surveying.​
    8·1 answer
  • Air at 27°C, 1 atm flows parallel to a flat plate, which is electronically heated. The plate is 0.5 m long in the direction of f
    8·1 answer
  • The shear force diagram is always the slope of the bending moment diagram. a)True b)- False
    14·1 answer
  • What have you learned about designing solutions? How does this apply to engineering? Think of some engineering solutions that st
    15·1 answer
  • How much thermal energy is needed to raise the temperature of 15kg gold from 45⁰ C up to 80⁰ C​
    10·1 answer
  • P9.28 A large vacuum tank, held at 60 kPa absolute, sucks sea- level standard air through a converging nozzle whose throat diame
    12·1 answer
  • The host at the end of the video claims that ___________ is crucial to his success as a driver. A. Reaction time B. A safe space
    5·1 answer
  • How are sedimentary - gravity flows different from fluid - gravity flows
    6·1 answer
  • Why do giant stars become planetary nebulas while supergiant stars become supernovas when their nuclear fusion slows and is over
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!