Answer:
P = 4.745 kips
Explanation:
Given
ΔL = 0.01 in
E = 29000 KSI
D = 1/2 in
LAB = LAC = L = 12 in
We get the area as follows
A = π*D²/4 = π*(1/2 in)²/4 = (π/16) in²
Then we use the formula
ΔL = P*L/(A*E)
For AB:
ΔL(AB) = PAB*L/(A*E) = PAB*12 in/((π/16) in²*29*10⁶ PSI)
⇒ ΔL(AB) = (2.107*10⁻⁶ in/lbf)*PAB
For AC:
ΔL(AC) = PAC*L/(A*E) = PAC*12 in/((π/16) in²*29*10⁶ PSI)
⇒ ΔL(AC) = (2.107*10⁻⁶ in/lbf)*PAC
Now, we use the condition
ΔL = ΔL(AB)ₓ + ΔL(AC)ₓ = ΔL(AB)*Cos 30° + ΔL(AC)*Cos 30° = 0.01 in
⇒ ΔL = (2.107*10⁻⁶ in/lbf)*PAB*Cos 30°+(2.107*10⁻⁶ in/lbf)*PAC*Cos 30°= 0.01 in
Knowing that PAB*Cos 30°+PAC*Cos 30° = P
we have
(2.107*10⁻⁶ in/lbf)*P = 0.01 in
⇒ P = 4745.11 lb = 4.745 kips
The pic shown can help to understand the question.
Answer: material resources: cameras, light detection and ranging systems, radar, sensors, advanced GPS, and millions of miles of training data, and more
I don't know about the intellectual resources sorry
Answer:
Option E
Explanation:
All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.
Answer:
The correct answer is A : Orientation dependence of normal and shear stresses at a point in mechanical members
Explanation:
Since we know that in a general element of any loaded object the normal and shearing stresses vary in the whole body which can be mathematically represented as

And 
Mohr's circle is the graphical representation of the variation represented by the above 2 formulae in the general oriented element of a body that is under stresses.
The Mohr circle is graphically displayed in the attached figure.