Answer:3.47 m
Explanation:
Given
Temperature(T)=300 K
velocity(v)=1.5 m/s
At 300 K
And reynold's number is given by
x=3.47 m
Answer:
526.5 KN
Explanation:
The total head loss in a pipe is a sum of pressure head, kinetic energy head and potential energy head.
But the pipe is assumed to be horizontal and the velocity through the pipe is constant, Hence the head loss is just pressure head.
h = (P₁/ρg) - (P₂/ρg) = (P₁ - P₂)/ρg
where ρ = density of the fluid and g = acceleration due to gravity
h = ΔP/ρg
ΔP = ρgh = 1000 × 9.8 × 7.6 = 74480 Pa
Drag force over the length of the pipe = Dynamic pressure drop over the length of the pipe × Area of the pipe that the fluid is in contact with
Dynamic pressure drop over the length of the pipe = ΔP = 74480 Pa
Area of the pipe that the fluid is in contact with = 2πrL = 2π × (0.075/2) × 30 = 7.069 m²
Drag Force = 74480 × 7.069 = 526468.1 N = 526.5 KN
Answer:
The lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.
Explanation:
Length of curve is given as
is given as
The K value is given from the table 3.3 for 55 mi/hr is 115. So the value of A is given as
A is given as
With initial grade, the elevation of PVC is
The station is given as
Low point is given as
The station of low point is given as
The elevation is given as
So the lowest point of the curve is at 239+42.5 ft where elevation is 124.16 ft.
Answer:
15.8
0.0944
Explanation:
L = 1.5
B = 1.0
Speed of water = 15cm
Temperature = 20⁰C
At 20⁰C
Specific weight = 9790
Kinematic viscosity v = 1.00x10^-4m²/s
Dynamic viscosity u = 1.00x10^-3
Density p = 998kg/m²
Reynolds number
= 0.15x1.5/1.00x10^-4
= 225000
S = 5
5x1.5/225000^1/2
= 0.0158
= 15.8mm
Resistance on one side of plate
F = 0.664x1x1.0x10^-3x0.15x225000^1/2
= 0.04724N
Total resistance
= 2N
= 2x0.04724
= 0.0944N