Answer:
x = 17
Step-by-step explanation:
Since the triangles are similar then corresponding angles are congruent.
∠ I = ∠P ← substitute values and solve for x
3x + 4 = 72 - x ( add x to both sides )
4x + 4 = 72 ( subtract 4 from both sides )
4x = 68 ( divide both sides by 4 )
x = 17
<span>A+B)^2 is the largest. It is A^2+2AB+B^2, which is clearly greater than the last two options. To compare (A+B)^2 and 2(A+B), we remove one A+B so that we're just comparing A+B and 2. As A+B must be at least 3 (as both must be positive integers, and one must be greater than the other, leading to a minimum value of A=2, B=1), A+B is greater than 2, and as a result, (A+B)^2 is always the largest.</span>
Answer:
Area = 228 m²
Perimeter = 60 m
Step-by-step explanation:
The figure given shows a rectangle that has a cut triangular portion.
✔️Area of the figure = area of rectangle - area of the triangular cut portion
= L*W + ½*bh
Where,
L = 20 m
W = 12 m
b = 20 - (8 + 8) = 4 m
h = 6 m
Plug in the values
Area = 20*12 - ½*4*6
Area = 240 - 12
Area = 228 m²
✔️Perimeter = perimeter of rectangle - base of the triangular cut portion
= 2(L + W) - b
L = 20 m
W = 12 m
b = b = 20 - (8 + 8) = 4 m
Plug in the values
Perimeter = 2(20 + 12) - 4
= 2(32) - 4
= 64 - 4
Perimeter = 60 m
Answer:
(1,4)
Step-by-step explanation:
if u substitute these numbers u can find out that these numbers make the solution.
hope this helps
see the attached figure to better understand the problem
we know that
The Area of the composite figure is equal to the sum of Area 1, Area 2 and Area 3
The Area 1 is a triangle
The Area 2 is a rectangle
The Area 3 is equal a semicircle
therefore
<u>the answer is the option</u>
a triangle, a rectangle, and a semicircle