Given:
Lens.........diameter ...fl#
eyepiece...2cm............5
objective...40cm........15
focal length of eyepiece = 2*5 = 10cm
focal length of objective = 40*15 = 600cm
magnification = FL obj / FL eyp = 600/10 = 60x
The unit of force is the 'Newton'.
1 newton is the force that accelerates 1 kilogram of mass
at the rate of 1 meter per second-squared.
1 N = 1 kg-m/s²
-- A force of 1 pound is about 4.448 newtons.
-- A force of 1 newton is about 3.6 ounces.
Question: How fast was the arrow moving before it joined the block?
Answer:
The arrow was moving at 15.9 m/s.
Explanation:
The law of conservation of energy says that the kinetic energy of the arrow must be converted into the potential energy of the block and arrow after it they join:

where
is the mass of the arrow,
is the mass of the block,
of the change in height of the block after the collision, and
is the velocity of the arrow before it hit the block.
Solving for the velocity
, we get:

and we put in the numerical values
,



and simplify to get:

The arrow was moving at 15.9 m/s
Answer: amplitude
Explanation: This describes the maximum amount of the displacement of a particle from it rest position. Usually, it is measured in metres
Since we are considering AM which is amplitude modulation, a technique used in electronic communication, most commonly for broadcasting information through a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is diversified in proportion to that of the message signal being broadcasted.
Answer:
Explanation:
Considering non - relativistic approach : ----
Speed of electron = 1 % of speed of light
= .01 x 3 x 10⁸ m /s
= 3 x 10⁶ m /s
Kinetic energy of electron = 1/2 m v²
= .5 x 9.1 x 10⁻³¹ x ( 3 x 10⁶ )²
= 40.95 x 10⁻¹⁹ J
Kinetic energy in electron comes from lose of electrical energy equal to
Ve where V is potential difference under which electron is accelerated and e is electronic charge .
V x e = kinetic energy of electron
V x 1.6 x 10⁻¹⁹ = 40.95 x 10⁻¹⁹
V = 25.6 Volt .