I think that by "Classical physics" is meant low speed things. By low speed, I think is meant speed far below very roughly half the speed of light, so that Relativistic, special or general, effects can be ignored. Or at least it is hoped that they can be ignored.
Fire extinguishers and rockets get propelled by forcing out large amounts of material (gases under very high pressure) through a nozzle, and the RECOIL from that propels something forward. So, if the action is the ejection of material, the reaction (recoil) is the ejector moving along the same line in the other direction. And that's an example of Newton's third law.
Given a propulsion system, the magnitude of the force recoiling on the ejector will change the momentum of the ejector, often written as the equation F=ma where F is the force, m is the mass being accelerated, and a being the acceleration.
Just as something will stay still until it is moved - inertia - so once set in uniform motion in a straight line, the thing will continue in that motion, theoretically for ever or until something alters its momentum. Newton's first law is to the effect of "every body continues in a state of rest or uniform motion in a straight line unless acted on by a resultant external force". Which, I think, is where the concept of inertia stems from.
I think that the above mostly tcuches on the 3 laws.Any more help needed, please ask.
Answer: 1
an object positioned at some height in a gravitational field
Explanation:
Gravitational potential energy of an object is the energy stored due to position of the object or position at certain height relative to zero position.
Gravitational potential energy can also be expressed as object position at some height above or below zero position in a gravitational field
I think 1 and 2 make sense. But 1 make more sense than 2
Answer:
B=9.1397*10^-4 Tesla
Explanation:
To find the velocity first we put kinetic energy og electron is equal to potential energy of electron
K.E=P.E

where :
m is the mass of electron
v is the velocity
V is the potential difference
eq 1
Radius of electron moving in magnetic field is given by:
eq 2
where:
m is the mass of electron
v is the velocity
q=e=charge of electron
B is the magnitude of magnetic field
Put v from eq 1 into eq 2



B=9.1397*10^-4 Tesla
The particle is an electron. The field slows down the electron without deflecting it. The direction of the electric field is <u>right.</u>
In physics, the motion of electrically charged particles gives rise to a field called an electric field. It is measured in force per unit charge.
This field applies force on other charged particles.
Particles bearing opposite charges attract each other while particles having similar charges repel each other in the field.
If a positive charge is placed in the field then the field line moves in an outward direction and for a negative charge, the direction of the lines is inward.
If you need to learn more about electric field click here:
brainly.com/question/26199225
#SPJ4
Hrdudikdodidbshshsjjsksks