Answer:1200
Explanation:
Given data
Upper Temprature
Lower Temprature 
Engine power ouput
Efficiency of carnot cycle is given by





rounding off to two significant figures

Answer:
Gwen’s assumption of asteroid hit as long term change is incorrect. Asteroid hit is not a long term change, instead, it is a short term change.
Explanation:
Examples of short term changes are drought, flood, volcanic eruption, etc. A short term change occurs quickly and can immediately affect organisms but it doesn’t become a reason for species extinction. The effects of a short term change don’t prevail over a long span of time.
Examples of long term changes are ice age, global warming, deforestation, etc. Unlike a short term change, it takes time but the consequences are far-reaching. It can lead to species extinction.
In this question, asteroid hit is a quick and unexpected hazard, unlike the slow long term environmental changes.
Answer:
A(3.56m)
Explanation:
We have a conservation of energy problem here as well. Potential energy is being converted into linear kinetic energy and rotational kinetic energy.
We are given ω= 4.27rad/s, so v = ωr, which is 6.832 m/s. Place your coordinate system at top of the hill so E initial is 0.
Ef= Ug+Klin+Krot= -mgh+1/2mv^2+1/2Iω^2
Since it is a solid uniform disk I= 1/2MR^2, so Krot will be 1/4Mv^2(r^2ω^2= v^2).
Ef= -mgh+3/4mv^2
Since Ef=Ei=0
Mgh=3/4mv^2
gh=3/4v^2
h=0.75v^2/g
plug in givens to get h= 3.57m
Dang that’s a lot wait i will answer in comments
Energy/power is not gained or lost going through a (ideal) transformer.
So the transformer in this problem really doesn't matter. If the lamp is using energy at the rate of 60 watts, then the whole contraption is getting 60 watts of power from the wall outlet.
Power = (voltage) x (current)
60 watts = (120 v) x (current)
Current = (60 watts) / (120 v)
<em>Current = 0.5 Ampere</em>