A small 20-kg canoe is floating downriver at a speed of 2 m/s. 40 J is the canoe’s kinetic energy.
Answer: Option A
<u>Explanation:</u>
The given canoe has the mass and is being given to move at a speed. Therefore the kinetic energy of the canoe can be calculated using the following method,
Given that mass of the canoe = 20 kg and its speed =1 m/s
As we know that the Kinetic energy has the formula,

Therefore, substituting the value into the equation, we get,
= 40 J
Answer:D.Refractive Indez
Explanation:
It is usually expressed the other way: the ratio of the speed of light in a vacuum to the speed of light in a medium. In that case, it is called the "index of refraction".
Answer:
A
Explanation:
The answer is A because proton number is the same as atomic number
Answer: C
high; large
Explanation:
The wave energy is related to its amplitude and frequency.
The wave energy is proportional to the amplitude of the wave. So, wave with the most energy will have high amplitude.
Also, frequency is related to wave energy. The larger the frequency, the more the energy of the wave.
Therefore, The waves with the MOST energy have high amplitudes and large
frequencies.
Answer:
1.137278672 m/s
+5.9 cm or -5.9 cm
Explanation:
A = Amplitude = 6.25 cm
m = Mass of object = 225 g
k = Spring constant = 74.5 N/m
Maximum speed is given by

The maximum speed of the object is 1.137278672 m/s
Velocity is at any instant is given by

The locations are +5.9 cm or -5.9 cm