Answer:
The central atom has 3 electron domains.
Explanation:
According to the Valence Shell electron pair repulsion theory (VSEPR) put forward by Gillespie and Nyholm in 1957, the shape of a molecule is determined by repulsion between all the electron pairs (electron domains) present in the valence shell.
The electron pairs or electron domains are known to position themselves as far apart in space as possible in order to minimize repulsions.
Hence, when the central atom of a molecule contains three electron domains, they are positioned at an angle of 120° from each other to minimize repulsions. Hence the answer.
As is, the equation has:
Reactants:
2 K
2 O
2 H
Products:
1 K
1 O
1 H
So, we can add coefficients to balance the equation:
K2O + H2O = 2KOH
The coefficient means that there are 2 moles of KOH, and now the equation is balanced as there is 2 of everything on both sides.
Answer:
d) The dilution equation works because the number of moles remains the same.
Explanation:
Let’s say that you have 1 mol of a solute in I L of solution. The concentration is 1 mol·L⁻¹. and <em>M</em>₁<em>V</em>₁ = 1 mol.
Now, you dilute the solution to a volume of 2 L. You still have 1 mol of solute, but in 2 L of solution. The new concentration is 0.5 mol·L⁻¹.
The volume has doubled, but the volume has halved, and <em>M</em>₂<em>V</em>₂ = 1 mol.
b) <em>Wrong</em>. The molar concentration changes on dilution.
c) <em>Wrong</em>. The volume changes on dilution.
a) <em>Wrong</em>, although technically correct, because if the moles don’t change, the mass doesn’t change either. However, the formula <em>M</em>₁<em>V</em>₁ has units mol·L⁻¹ × L = mol. Thus, in the formula, it is moles that are constant.