Answer:
B
Explanation:
well heterogenous mixtures are not uniformly distributed these meaning whatever components are "mixed" can be seperated easily
a example of this can be
Soil, oil in water, ice in water
while Homogeneous mixture cannot be seen seperated
Explanation:
carbon has 1 less electron energy shell than silicon
Answer:
A liquid-fueled rocket has two liquids (liquids are good because of the density, they need less space than a gas to be stored), such that these liquids are called the fuel and the oxidizer.
These liquids are injected into a system that leads to a combustion chamber, where the liquids are mixed (we need to mix the fuel with the oxidizer to enable the combustion of the fuel) and burned to produce thrust.
Some common examples of oxidizers are liquid oxygen, which may be combined with fuels like liquid hydrogen, liquid methane, kerosene and hydrazine.
Other oxidizers are liquid fluorine (which also can be combined with the fuels liquid hydrogen and hydrazine), nitrogen tetroxide (which can be combined whit kerosene, hydrazine and other fuels) and FLOX-70, which can only be combined with kerosene.
The "most commonly used" may depend on the country and the type of liquid propellant ( petroleum, cryogens, and hypergols)
Such that the most common oxidizer may be liquid oxygen, and the most common fuel the kerosene.
Answer:
Molality = 7.5 mol/kg
Explanation:
Given data:
Mass of NH₄Cl = 6.30 g
Mass of water = 15.7 g (15.7/1000 =0.016 kg)
Molality = ?
Solution:
Formula of molality:
Molality = Moles of solute / mass of solvent in gram
Now we will first calculate the number of moles of solute( NH₄Cl )
Number of moles = mass/ molar mass
Molar mass of NH₄Cl = 53.491 g/mol
Number of moles = 6.30 g/ 53.491 g/mol
Number of moles = 0.12 mol
Now we will calculate the molality.
Molality = Moles of solute / mass of solvent in gram
Molality = 0.12 mol / 0.016 kg
Molality = 7.5 m
or (m=mol/kg)
Molality = 7.5 mol/kg
Answer:
162 g Fe₂O₃
Explanation:
To find the mass of Fe₂O₃, you need to (1) convert grams C to moles C (via molar mass from periodic table), then (2) convert moles C to moles Fe₂O₃ (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles Fe₂O₃ to grams (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to reflect the given value.
Molar Mass (C): 12.011 g/mol
2 Fe₂O₃(s) + 3 C(s) ---> 4 Fe(s) + 3 CO₂(g)
Molar Mass (Fe₂O₃): 2(55.845 g/mol) + 3(15.998 g/mol)
Molar Mass (Fe₂O₃): 159.684 g/mol
18.3 g C 1 mole 2 moles Fe₂O₃ 159.684 g
-------------- x ---------------- x ------------------------- x ----------------- = 162 g Fe₂O₃
12.011 g 3 moles C 1 mole