A perfect black body can’t be realized
Answer:
True b and c
Explanation:
In an RLC circuit the impedance is
![Z = \sqrt{[R^{2} + ( (wL)^{2} + (\frac{1}{wC})^{2} ] }](https://tex.z-dn.net/?f=Z%20%3D%20%5Csqrt%7B%5BR%5E%7B2%7D%20%2B%20%28%20%28wL%29%5E%7B2%7D%20%2B%20%28%5Cfrac%7B1%7D%7BwC%7D%29%5E%7B2%7D%20%5D%20%20%20%20%20%7D)
examine the different phrases..
a) False. The maximum impedance is the value of the resistance
b) True. Resonance occurs when
(wL)² + (1 / wC)² = 0
w² = 1 / LC
c) True. In resonance the impedance is the resistive part and the power is maximum
d) False. In resonance the inductive and capacitive part cancel each other out
e) False. The impedance is always greater outside of resonance, but at the resonance point they are equal
Answer:
a = 8.06 m/s²
Explanation:
The acceleration of this car can be found using the first equation of motion:

where,
a = acceleration = ?
vf = final speed = 26.8 m/s
vi = initial speed = 0 m/s
t = time = 3.323 s
Therefore,

<u>a = 8.06 m/s²</u>
Answer:
K' = 1777.777 J
Explanation:
Given that
m = 40 kg
v= 15 m/s
K=1000
Given that kinetic energy(K) varies with mass(m) and velocity(v)
K= C(mv²)
Where
C= Constant
m=mass
v=velocity
When
m = 40 kg ,v= 15 m/s ,K=1000
K= C(mv²)
1000 = C( 40 x 15²)
C=0.111111
When m = 40 kg and v= 20 m/s
K' = C(mv²)
K= 0.1111 x (40 x 20²)
K' = 1777.777 J
Answer:
The hypothesis may or may not be true and needs to be tested. It might be the answer to the problem. Hence, it must be tested thoroughly. When these predictions are tested again and again in independent scientific experiments and gets verified, the hypothesis is converted into a scientific theory.