1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexira [117]
3 years ago
11

Two 2.0 kg bodies, A and B, collide. The velocities before the collision are ~vA = (15ˆi + 30ˆj) m/s and ~vB = (−10ˆi + 5.0ˆj) m

/s.After the collision, ~vA = (−5.0ˆi + 20ˆj) m/s. What are (a) the final velocity of B and (b) the change in the total kinetic energy (including sign)?
Physics
1 answer:
AleksandrR [38]3 years ago
6 0

Answer:

Part a)

10\hat i + 15\hat j = \vec v

Part b)

\Delta K = 500 J

Explanation:

As we know that there is no external force on the system of two masses so here total momentum of the system will remains conserved

so we can say

m_1v_{1i} + m_2v_{2i} = m_1v_{1f} + m_2v_{2f}

(2kg)(15\hat i + 30 \hat j) + (2 kg)(-10\hat i  + 5\hat j) = 2kg(-5\hat i + 20\hat j) + 2\vec v

5\hat i + 35\hat j = (-5\hat i + 20\hat j) +\vec v

10\hat i + 15\hat j = \vec v

Part b)

magnitude of the initial speed of A = \sqrt{15^2 + 30^2} = 33.54 m/s

magnitude of the initial speed of B = \sqrt{10^2 + 5^2} = 11.18 m/s

magnitude of final speed of A = \sqrt{5^2 + 20^2} = 20.61 m/s

magnitude of final speed of B = \sqrt{10^2 + 15^2} = 18.03 m/s

Now change in total kinetic energy is given as

\Delta K = (\frac{1}{2}m_1v_{1i}^2 + \frac{1}{2}m_2v_{2i}^2) - (\frac{1}{2}m_1v_{1f}^2 + \frac{1}{2}m_2v_{2f}^2)

\Delta K = (\frac{1}{2}2(33.54)^2 + \frac{1}{2}2(11.18)^2) - (\frac{1}{2}2(20.61)^2 + \frac{1}{2}2(18.03)^2)

\Delta K = 500 J

You might be interested in
1. Which word or phrase best describes entropy?
Mama L [17]
The answer to this question is:

D) Disorder
7 0
3 years ago
Read 2 more answers
How many kindergarteners do you think you can take on a fight before getting tired or over powered?
yulyashka [42]
Is this a serious question ?
4 0
3 years ago
Read 2 more answers
5g of ammonium nitrate was dissolved in 60g of water in an insulated container. The temperature at the start of the reaction was
Minchanka [31]

Answer: The energy absorbed by the reaction from the water is 996 Joules.

Explanation:

Energy absorbed by the reaction or energy lost by the water to the reaction,Q.

Mass of the the reaction  ,m = 60 g

Specific heat of water = c = 4.15 J\g ^oC

Change is temperature=\Delta T=19^oC-23^oC=-4^oC

Q=mc\Delta T=60 g\times 4.15 J\g ^oC\times (-4^oC)=-996 Joules

Negative sigh indicates that energy was given by the water to the reaction.

The energy absorbed by the reaction from the water is 996 Joules.

5 0
3 years ago
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
Hydrogen line spectrum lies entirely within visible range
mart [117]

No, that's silly.

You've got your Pfund series where electrons fall down to the 5th level,
your Brackett series where they fall to the 4th level, and your Paschen
series where they fall to the 3rd level.  All of those transitions ploop out
photons at Infrared wavelengths.

THEN next you get your Balmer series, where the electrons fall in
to the 2nd level.  Most of those are at visible wavelengths, but even
a few of the Balmer transitions are in the Ultraviolet.

And then there's the Lyman series, where electrons fall all the way
down to the #1 level.  Those are ALL in the ultraviolet. 
6 0
3 years ago
Other questions:
  • The diagram shows a ramp with a toy car at the bottom. A string attached to the front of the car and the string goes over a pull
    12·1 answer
  • A scientist is trying to determine the identity of an element. It is highly reactive to water and forms an ionic bond with chlor
    7·1 answer
  • How long will it take a car to accelerate from 15.2 to 23.5 m/s if the car has an average acceleration of 3.2 m/s?
    13·2 answers
  • Why is the chemical formula magnesium sulfide written as MgS and NOT Mg2S2?
    11·2 answers
  • Naturally occurring element X exists in three isotopic forms: X-28 (27.977 amu, 92.23% abundance), X-29 (28.976 amu, 4.67% abund
    15·1 answer
  • Why is the answer B and not E?
    8·2 answers
  • Physics question plz help ASAP
    14·1 answer
  • Find the acceleration due to gravity on the surface of Mars. The
    6·1 answer
  • In our Solar System, the inner planets are rocky because Choose one: A. warm temperatures in the inner disk caused the inner pla
    5·1 answer
  • In each part calculate the kinetic energy of the given objects in joules a) an automobile whose mass is 1260kg moving at a speed
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!