As you go down a group on the periodic table, atomic radii tend to increase because elements with larger atomic numbers have more occupied electron levels which take up more space surrounding the nucleus.
I hope this helps.
Answer:
ⁿₐX => ²¹⁸₈₄Po
Explanation:
Let ⁿₐX be the isotope.
Thus, the equation can be written as follow:
²²²₈₆Rn —> ⁴₂α + ⁿₐX
Next, we shall determine the value of 'n' and 'a'. This can be obtained as follow:
222 = 4 + n
Collect like terms
222 – 4 = n
218 = n
Thus,
n = 218
86 = 2 + a
Collect like terms
86 – 2 = a
84 = a
Thus,
a = 84
ⁿₐX => ²¹⁸₈₄Po
²²²₈₆Rn —> ⁴₂α + ⁿₐX
²²²₈₆Rn —> ⁴₂α + ²¹⁸₈₄Po
If copper is heated with iron oxide there is no obvious reaction because
copper is less reactive than iron.
On a reactivity chart, copper is far below iron. This makes it impossible for a replacement reaction to occur, so the equation doesn't change.
I hope I helped!
Answer:
1) Ba(OH)₂
2) The correct option is a) they conduct electricity.
Explanation:
To deduce the formula of Barium hydroxide, we have to go to the periodic table and look for the Barium (Ba), which is in group 2 and has an ionic charge of 2+. Hydroxides are not an element that is present in the periodic table is the combination of Oxygen and Hydrogen (OH), and its ionic charge is 1-.
To name this substance, we write the elements that form it, which are Ba OH, then we see the ionic charges that they have, Ba2+ OH 1- and we change these charges giving the 2+ to the OH and the 1- to the Ba. It would look Ba OH₂; we do not write the 1, and as there is a 2, the OH, has to be between brackets so that the final formula is Ba(OH)₂. What we did is balancing the charges of the elements. In other words, we need 2 OH for every Ba. Hydroxides give an electron to balance the Ba ionic charge.
Barium Hydroxide is an ionic compound because ionic compounds are formed by a metal (Ba) and a nonmetal element (OH), ionic compounds are charged, so when they are in an aqueous solution they conduct electricity because their ions move freely in the solution.
Answer:
There are two types of hydrocarbons: aliphatic and aromatic. The three types of aliphatic hydrocarbons are alkanes, alkenes, and alkynes. Aromatic hydrocarbons include benzene. Overall, examples of hydrocarbons are methane, ethane, propane, and butane.