Answer:
Explanation:
Cu²⁺ + 2e⁻ → Cu ( copper gets reduced )
Cu → Cu²⁺ + 2e⁻ ( copper gets oxidized )
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Delta H of solution = -Lattice Energy + Hydration
<span>Delta H of solution=- (-730)+(-793) </span>
<span>Delta H of solution= -63kJ/mol </span>
<span>Now we find moles of LiI: </span>
<span>10gLiI/133.85g=.075moles </span>
<span>multiply moles to the delta H of solution to cross cancel moles. .75moles x -64kJ/mol =4.7</span>
Answer:
wavelength = 0.534×10⁻¹⁶ m
Explanation:
Given data:
Frequency of wave = 5.62 ×10²⁴ Hz
Wavelength = ?
Solution:
Speed of photon = wavelength × frequency
wavelength = speed of photon / frequency
Now we will put the values in formula:
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ Hz
Hz = s⁻¹
wavelength = 3×10⁸ m/s / 5.62 ×10²⁴ s⁻¹
wavelength = 0.534×10⁻¹⁶ m
State the given:
Moles of Sulfur = 5 moles
Molar mass of Sulfur = 32.06g/mol
Look through the formulas:
Moles = Mass/Molar Mass
Rearrange the equation:
Mass = Moles x Molar mass
Plug in your given:
5 moles Sulfur x <u>32.06g</u>
1 mol
<u>= 160.3g of Sulfur</u>
Ethyl acetate and methyl benzoate combination of reactants will produce ethyl 3-phenyl-3-oxopropanoate when treated first with an alkoxide and then with a diluted aqueous acid
<h3>Ethyl acetate</h3>
One of the most straightforward carboxylate esters is ethyl acetate. The simplest is methyl formate, a former Molecule of the Week. Most people enjoy the taste and aroma of the colorless liquid's sweet, fruity scent.
Ethyl acetate was initially created by combining ethanol and acetic acid, as one might anticipate. The process was the traditional Fischer esterification, which dates back to 1895 and is catalyzed by an acid. This commercial synthesis is still the most popular. A different approach is the Tishchenko reaction, in which acetaldehyde disproportionately reacts with base to form alcohol and acid, which subsequently esterify naturally.
Learn more about Ethyl acetate here:
brainly.com/question/13386859
#SPJ4