The average velocity or displacement of a particle for the first time interval is <u>Δs / Δt = 6 cm/s.</u>
Solution:
As we know that displacement is calculated in centimeters and the unit of time is second.
The average velocity for the first interval [1,2] is given
Δs / Δt = s (t2) - s (t) / t2 - t1
Δs / Δt = 2sin2 π + 3cos 2 π - ( 2sin π + 3cos π ) / 2 - 1
Δs / Δt = 2(0) + 3(1) - 2(0) - 3 (-1) / 1
Δs / Δt = 6 cm/s
Thus the average velocity or displacement of a particle for the first time interval is Δs / Δt = 6 cm/s
If you need to learn more about displacement click here:
brainly.com/question/28370322
#SPJ4
The complete question is:
The displacement of a particle moving back and forth along a line is given by the following equation s(t) = 2sin π t + 3cos π t. Estimate the instantaneous velocity of the particle when t = 1
Answer:
about: 110.14 million mi
Explanation:
the distance to Mars from Earth is 140 million miles (225 million kilometers).But, distance to Mars from Earth is constantly changing.
Hope that was helpful.Thank you!!!
Answer:

Explanation:
For the simple pendulum problem we need to remember that:
,
where
is the angular position, t is time, g is the gravity, and L is the length of the pendulum. We also need to remember that there is a relationship between the angular frequency and the length of the pendulum:
,
where
is the angular frequency.
There is also an equation that relates the oscillation period and the angular frequeny:
,
where T is the oscillation period. Now, we can easily solve for L:

Elements with the largest atomic radius are found in the lower left hand of the periodic table.
Answer:
Hyperopia
Explanation:
In hyperopia ,people face difficulties to see close up object , but can see object easily which are at a distance.
The main reason of hyperopia is our eyeball.When our eyeball become too short , then light focus behind the retina. Sowe will face problem to see near object but we can see distance object easily. Hyperopia is the opposite of nearsightedness. Hyperopia can be corrected by using contact lenses.