Answer:
268N
Explanation:
The upward force acting on the block are the reaction and the hooked table..
The total normal force acting = normal reaction + 24N
Note that the normal reaction is always equal the weight of the table
Hence the normal force acting in the block is 244.0+24 = 268.0N
Water<span> and the </span>atmosphere<span>. </span>Water enters the atmosphere through<span> evaporation, transpiration, excretion and sublimation: Transpiration is the loss of </span>water<span> from plants (</span>via<span> their leaves).</span>
Answer:
100 cm³
Explanation:
Use ideal gas law:
PV = nRT
where P is absolute pressure, V is volume, n is number of moles, R is ideal gas constant, and T is absolute temperature.
n and R are constant, so:
P₁V₁/T₁ = P₂V₂/T₂
If we say point 1 is at 40m depth and point 2 is at the surface:
P₂ = 1.013×10⁵ Pa
T₂ = 20°C + 273.15 = 293.15 K
P₁ = ρgh + P₂
P₁ = (1000 kg/m³ × 9.8 m/s² × 40 m) + 1.013×10⁵ Pa
P₁ = 4.933×10⁵ Pa
T₁ = 4.0°C + 273.15 = 277.15 K
V₁ = 20 cm³
Plugging in:
(4.933×10⁵ Pa) (20 cm³) / (277.15 K) = (1.013×10⁵ Pa) V₂ / (293.15 K)
V₂ = 103 cm³
Rounding to 1 sig-fig, the bubble's volume at the surface is 100 cm³.
The velocity of the boy when he hits the water at the bottom of the slide is 14 m/s.
<h3>
Velocity of the boy at the bottom of the slide</h3>
The velocity of the boy when he hits the water at the bottom of the slide is calculated from the principle of conservation of energy.
K.E = P.E
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- h is height of the boy
- g is acceleration due to gravity
v = √(2 x 9.8 x 10)
v = 14 m/s.
Thus, the velocity of the boy when he hits the water at the bottom of the slide is 14 m/s.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1