1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IrinaVladis [17]
2 years ago
9

Explain why the rate of diffusion of a gas decreases with decrease in temperature​

Physics
1 answer:
Ivenika [448]2 years ago
7 0

Temperature: Higher temperatures increase the energy and therefore the movement of the molecules, increasing the rate of diffusion. Lower temperatures decrease the energy of the molecules, thus decreasing the rate of diffusion. Solvent density: As the density of a solvent increases, the rate of diffusion decreases.

You might be interested in
A 91.0-kg hockey player is skating on ice at 5.50 m/s. another hockey player of equal mass, moving at 8.1 m/s in the
never [62]

The momentum before the collision velocity after the collision will be 1237.6 kg m/s² and 6.8 m/sec.

<h3>What is the law of conservation of momentum?</h3>

According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.

The given data in the problem is;

(m₁) is the mass of hockey player 1= 91.0-kg

(m₂) is the mass of hockey player 2=  91.0-kg

(u₁) is the velocity before collision of hockey player 1 = 5.50 m/s.

(u₂) is the velocity before the collision of hockey player 2=?

a)

Momentum before the collision;

\rm  m_1u_1 + m_2u_2 \\\\ 91.0 \times 5.50 + 91.0 \times 8.1 \\\\ 1237.6 kg m/s^2

Momentum before the collision = 1237.6 kg m/s².

b)

The velocity of the two hockey players after the collision from the law of conservation of the momentum as:

Momentum before collision = Momentum after the collision

1237.6 kg m/s² = (m₁+m₂)V

1237.6 kg m/s² =(2 ×91.0-kg )V

V=6.8 m/sec.

Hence, momentum before the collision velocity after the collision will be 1237.6 kg m/s² and 6.8 m/sec.

To learn more about the law of conservation of momentum refer;

brainly.com/question/1113396

#SPJ1

8 0
2 years ago
A student (m = 68 kg) falls freely from rest and strikes the ground. During the collision with the ground, he comes to rest in a
Gnesinka [82]

Answer:

5.7141 m

Explanation:

Here the potential and kinetic energy will balance each other

mgh=\frac{1}{2}mv^2\\\Rightarrow v=\sqrt{2gh}

This is the initial velocity of the system and the final velocity is 0

t = Time taken = 0.04 seconds

F = Force = 18000 N

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

Equation of motion

v=u+at\\\Rightarrow a=\frac{v-u}{t}

From Newton's second law

F=ma\\\Rightarrow F=m\frac{v-u}{t}\\\Rightarrow 18000=68\frac{0-\sqrt{2gh}}{0.04}\\\Rightarrow \frac{18000}{68}\times 0.04=-\sqrt{2\times 9.81\times h}\\\Rightarrow 10.58823=-\sqrt{2\times 9.81\times h}

Squarring both sides

112.11061=2\times 9.81\times h\\\Rightarrow h=\frac{112.11061}{2\times 9.81}\\\Rightarrow h=5.7141\ m

The height from which the student fell is 5.7141 m

5 0
3 years ago
Stephanie serves a volleyball from a height of 0.80 m and gives it an initial velocity of +7.2 m/s straight up. how high will th
Papessa [141]
<span>3.78 m Ignoring resistance, the ball will travel upwards until it's velocity is 0 m/s. So we'll first calculate how many seconds that takes. 7.2 m/s / 9.81 m/s^2 = 0.77945 s The distance traveled is given by the formula d = 1/2 AT^2, so substitute the known value for A and T, giving d = 1/2 A T^2 d = 1/2 9.81 m/s^2 (0.77945 s)^2 d = 4.905 m/s^2 0.607542 s^2 d = 2.979995 m So the volleyball will travel 2.979995 meters straight up from the point upon which it was launched. So we need to add the 0.80 meters initial height. d = 2.979995 m + 0.8 m = 3.779995 m Rounding to 2 decimal places gives us 3.78 m</span>
7 0
3 years ago
if the resistance of a car headlight is 15 ohm and the current through it is 0.60, what is the voltage across the headlight?
Strike441 [17]

Answer:

9 volts (assuming 0.60 is in Amperes)

Explanation:

Recall that Ohms law can be expressed as

V = IR, where

V = voltage,

I = current (given as 0.6. I'm going to assume that the units is Amperes because it is not given)

R = resistance (given as 15 ohm)

substituting the above values into the formula

V = IR

V = (0.6)(15)

V = 9 Volts

4 0
3 years ago
Read 2 more answers
An object that is moving must have a change in A) its speed. B) its position. C) its acceleration. D) its applied force.
denis-greek [22]

An object that's moving doesn't necessarily change its speed or acceleration. Also, the force applied to it doesn't need to change ... in fact, a moving object doesn't need ANY force applied to it in order to keep moving.

But any moving object WILL have a change in its position ... THAT's how you know it's moving, and that's WHY you say "It's moving !". (choice-B)

8 0
2 years ago
Other questions:
  • If a light bulb is missing or broken in a parallel circuit will the other bulb light?
    7·1 answer
  • Which statement best describes an atom? (1 point) protons and neutrons grouped in a specific pattern protons and electrons sprea
    12·1 answer
  • The radar system of a navy cruiser transmits at a wavelength of 2.0 cm, from a circular antenna with a diameter of 2.0 m. At a r
    10·1 answer
  • Two charged particles are a distance of 1.62 m from each other. One of the particles has a charge of 7.10 nc, and the other has
    9·1 answer
  • Two satellites, A and B are in different circular orbits
    9·1 answer
  • In a bicycle race on a straight road, the leader is 72.0 m from the finish line and continues to travel to the finish line with
    15·1 answer
  • Explain the range of effectiveness of each fundamental force by describing the distance that each force influence nearby matter
    13·1 answer
  • As part of your daily workout, you lie on your back and push with your feet against a platform attached to two stiff springs arr
    10·1 answer
  • A ball thrown vertically upwards from ground
    5·1 answer
  • Joanna claims that a large block of ice will cool a substance more than a small block of ice will at the same temperature. To su
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!