Answer:
108 extended days
Explanation:
Regular school hours a day = 6 hr
No. of school days to make up by extending the regular hours = 3 days
Amount of time added to the regular hours of school = 10 min
No. of extended school days to make up the 3 school days by following the above mentioned criteria be x.
Time of school hours in 3 days = 

are required to make up 3 days of school having 6 hours of regular timing with 10 minutes of add-on time each day.
Answer:
The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Explanation:
Let suppose that spaceship is accelerated uniformly. A yard equals 0.914 meters. A feet equals 0.304 meters. If air viscosity and friction can be neglected, then acceleration (
), measured in meters per square second, is estimated by this kinematic formula:
(1)
Where:
- Travelled distance, measured in meters.
,
- Initial and final speeds of the spaceship, measured in meters.
If we know that
,
and
, then the acceleration experimented by the spaceship is:


The acceleration experienced by the occupants of the spaceship during launch is 282652.782 meters per square second.
Answer:
A) The ball hits the ground 74.45 m far from the hitting position.
B) Maximum height of the ball = 18.57 m
Explanation:
There are two types of motion in this horizontal and vertical motion.
We have velocity = 27 m/s at 45° above the horizontal
Horizontal velocity = 27cos45 = 19.09 m/s
Vertical velocity = 27sin45 = 19.09 m/s
Time to reach maximum height,
v = u + at
0 = 19.09 - 9.81 t
t = 1.95 s
So total time of flight = 2 x 1.95 = 3.90 s
A) So the ball travels at 19.09 m/s for 3.90 seconds.
Horizontal distance traveled = 19.09 x 3.90 = 74.45 m
So the ball hits the ground 74.45 m far from the hitting position.
B) We have vertical displacement
S = ut + 0.5 at²
H = 19.09 x 1.95 - 0.5 x 9.81 x 1.95² = 18.57 m
Maximum height of the ball = 18.57 m
Answer:
The bulb is not powered because the negative end of the battery is not connected to the electric current,making it dysfunctional. The electrons have to flow through the positive and negative ends of the battery in order for it to work.
Hope this helps.
<span>Given:
3,500 kilometers
Find:</span>
Years for two continents to collide = ?
<span>Solution:
We know that </span>typical motions of one plate relative to another
are 1 centimeter per year.
So first, we convert 3,500 km to cm.<span>
</span><span>
</span>
The solution would be like this for this specific problem:
1 km = 100,000 cm
3,500 km x 100,000 = 350,000,000 cm
Since we know that 1 cm = 1 year, then that means
350,000,000 cm is equivalent to 350,000,000 years.
Therefore, it would take 350 million years for two continents
that are 3500 kilometers apart to collide.
<span>
To add, </span>a phenomenon of the plate tectonics of Earth that occurs at
convergent boundaries is called the continental collision.