Explanation:
In CO₂ there's 2 double bonds.
Structure:
O=C=O (linear) (180°)
Therefore,
Option C is correct✔
The reaction mechanism for an alpha,beta-unsaturated ketone to react with basic peroxide to form an epoxide is shown below with a general ketone. The basic hydroxide is used to deprotonate the peroxide molecule to create a strong HOO- nucleophile. The peroxide then attacks the beta-carbon of the alkene and this pushes the electrons up to the oxygen of the carbonyl. This is the first intermediate that is formed during this reaction.
After the intermediate is formed, the lone pair from the oxygen pushes back down to form the carbonyl once more and this breaks a carbon-carbon bond which attacks the oxygen of the peroxy group, ultimately substituting an -OH group and forming the final epoxide ketone product.
Hello!
The concentration of the final solution when a<span> chemistry teacher adds 50.0 mL of 1.50 M H2SO4 solution to 200 mL of water is
0,3 MTo calculate that, you'll need to use the dilution law, where initial and final concentrations are M1 and M2 respectively, and initial and final volumes are V1 and V2, as shown below.
Keep in mind that the final volume is the sum of the 200 mL of water and the 50 mL of H</span>
₂SO₄ that were added by the teacher. 
Have a nice day!