Answer: unused waste from food processing
Explanation: have you takin the chemical reaction system unit test yet? It’s alternated
Moles of Zn present= 2.36/65.4= 0.0361 moles
Therefore maximum moles of ZnO= 0.0722
Mass of one mole of ZnO= 81.4
Mass of ZnO produced= 0.0722 x 81.4= 5.87g
The formula used for determining gas pressure, volume and temperature interaction would be PV=nRT.
<span>• What is the temperature in Kelvins?
</span>You already right at this part. Kelvin temperature formula from celsius should be:
K= C+273.15=
<span>K= 27 +273.15 = 300.15
It is important to remember that the formula in this question is using Kelvin unit at temperature, not Celcius or Fahrenheit.
</span>
<span>• Assuming that everything else remains constant, what will happen to the pressure if the temperature decreases to -15 ºC?
</span>In this case, the temperature is decreased from 27C into -15C and you asked the change in the pressure.
Using PV=nRT formula, you can derive that the temperature will be directly related to pressure. If the temperature decreased, the pressure will be decreased too.
<span> If you increase the number of moles to 6 moles, increase temperature to 400K and reduce the volume to 25 L, what will the new pressure be?
</span>PV=nRT
P= nRT/V
P= 6 moles* <span>0.0821 L*atm/(mol*K) * 400K/25L= 7.8816 atm</span>
Answer:
28
Explanation:
it states that the atom is neutral, meaning the number of electrons and protons are the same. so if there are 13 electrons, there are 13 protons. And the mass number is neutrons plus protons. So 13+15 is 28
Answer: See below
Explanation: a. The mass of an element is composed of:
protons: 1 amu each
neutrons: 1 amu each
electrons: 0 amu each
Only the protons and neutrons are counted in the atomic mass of an element
b. Electrons are assigned a mass of 0. They do have a mass, but it is exceedingly small compared to the protons and neutrons, so they are left out of the calculation of an element's mass.
c. An element becomes unstable if the neutrons exceed the protons by a certain ratio, dependent on the element.