Answer:
Imagine you have an orange. This is your imaginary Earth. When you look at it in any direction, you won’t be able to see all sides of it. But when you peel the orange, flatten and stretch it out, you can begin to see everything.
Similarly, a map projection is a method by which cartographers translate a sphere or globe into a two-dimensional representation. In other words, a map projection systematically renders a 3D ellipsoid (or spheroid) of Earth to a 2D map surface.
Explanation:
Answer:
Explanation:
The rocky planets include Mercury, Venus, Earth, and Mars. they are made up of rocks and metals and have solid surfaces.They are the closest four planets to the Sun. The gas giants are Neptune, Uranus, Saturn, and Jupiter. they are further from the sun and are in the outer part of the solar system. I hope this helps!
Answer:
pressure of the water = 3.3 ×
pa
Explanation:
given data
velocity v1 = 1.5 m/s
pressure P = 400,000 Pa
inside radius r1 = 1.00 cm
pipe radius r2 = 0.5 cm
h1 = 0 (datum at inlet)
h2 = 5.0 m (datum at inlet)
density of water ρ = 1000 kg/m³
to find out
pressure of the water
solution
we consider here flow speed in bathroom that is = v2 and Pressure in bathroom is = P2
here we will use both continuity and Bernoulli equations
because here we have more than one unknown so that
v1 × A1 = v2 × A2 × P1 + ρ g h1 + (0.5)ρ v1² = P2 + ρ g h2 + (0.5) ρ v2²
now we use here first continuity equation for get v2
v2 =
v2 =
v2 = 6 m/s
and now we use here bernoulli eqution for find here p2 that is
P2 = P1 - 0.5× ρ ×(v2² - v1²) - ρ g (h2- h1 )
P2 = 400000 - 0.5× 1000 ×(6² - 1.5²) - 1000 × 9.81 × (5-0 )
P2 = 3.3 ×
pa
Answer:
Explanation:
check attached image for figure, there is supposed to be a figure for this question containing a distance(height of collar at position A) but i will assume 0.2m or 200mm
Consider the energy equilibrium of the system

Here, F is the force acting on the collar,
is the height of the collar at position A, m is the mass of the collar C, g is the acceleration due to gravity,
is the velocity of the collar at position B, and
is the velocity of the collar at A
Substitute 14.4N for F, 0.2m for
, 1.5kg for m,
for g and 0 for 

Therefore, the velocity at which the collar strikes the end B is 4.412m/s
The number of charge drifts are 3.35 X 10⁻⁷C
<u>Explanation:</u>
Given:
Potential difference, V = 3 nV = 3 X 10⁻⁹m
Length of wire, L = 2 cm = 0.02 m
Radius of the wire, r = 2 mm = 2 X 10⁻³m
Cross section, 3 ms
charge drifts, q = ?
We know,
the charge drifts through the copper wire is given by
q = iΔt
where Δt = 3 X 10⁻³s
and i = 
where R is the resistance
R = 
ρ is the resistivity of the copper wire = 1.69 X 10⁻⁸Ωm
So, i = 
q = 
Substituting the values,
q = 3.14 X (0.02)² X 3 X 10⁻⁹ X 3 X 10⁻³ / 1.69 X 10⁻⁸ X 0.02
q = 3.35 X 10⁻⁷C
Therefore, the number of charge drifts are 3.35 X 10⁻⁷C