Answer
From
V=Distance/time
The distance round a circular path or Object is 2πr
so
v=2πr/T
Making T(period) subject
T=2πr/v
where v is the linear velocity.
We don't have the velocity but we can get it.
The Moon and Earth exert gravitational force on each other and the Moon is kept in Orbit by Centripetal force.
Since the Moon doesn't fly out of Orbit... it must mean that the Gravitational force being exerted on it by the Earth is equal to its centripetal Force.
Equating Both (Fg=Fc)
Fg=GMm/R²
Fc=mv²/r
GMm/R² = mv²/R
Canceling out "m" and "r" on both sides
we're left with
V²=GM/R
V=√GM/R
Where M= Mass of Earth (5.98x10^24)
R=Distance between the center of earth and the Moon
G= Gravitational Constant(Value 6.67x10^-11)
V=√6.67x10^-11 x 5.98x10^24/(3.82x10^8)
V=1021.84meters per second.
Now
T=2πr/v
=2π x 3.82x10^8 / 1021.84
T=2.35x10^6seconds
Converting to days by dividing by(24 x 3600)
You have
T=27.2days approx.
✅✅✅
the heat required to convert a solid into a liquid or vapor, or a liquid into a vapor, without change of temperature. hope this helps
The acceleration is 
Explanation:
This is a uniformly accelerated motion (constant acceleration), therefore we can apply the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the scooter in this problem, we have
u = 0 (it starts from rest)
v = 10.0 m/s is the final velocity
t = 4.0 s is the time interval
Solving for a, we find the acceleration:

Learn more about acceleration:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
The power drawn by the toaster is closest to:
(A) 370 W
Explanation:
First we calculate the resistance of the nichrome wire (R).

Where radious (r), resistance coefficient (p), and Length (L)

After replace the value in the ohm law power formula to obtain the power consumed:

Answer:
Mass
Explanation:
The mass of an object expresses the amount of matter it comprises. Which implies that objects with higher mass contains higher matter compared to objects with lesser masses. Thereby it determines the measure of inertia experienced by an object when a force is applied to change its direction of motion, or to set it in motion when at rest, or bring it to rest when in motion.
The mass of an object the same no matter its location, and it is measured in kilograms.