Answer:
The tension is 
Explanation:
From the question we are told that
The total mass is 
The radius is 
The density of air is 
Generally the upward force acting on the balloon is mathematically represented as

=> 
=> 
Here V is the volume of the spherical helium filled balloon which is mathematically represented as

=> 
=> 
So


Answer: a) The acceletarion is directed to the center on the turntable. b) 5 cm; ac= 0.59 m/s^2; 10 cm, ac=1.20 m/s^2; 14 cm, ac=1.66 m/s^2
Explanation: In order to explain this problem we have to consider teh expression of the centripetal accelartion for a circular movement, which is given by:
ac=ω^2*r where ω and r are the angular speed and teh radios of the circular movement.
w=2*π*f
We know that the turntable is set to 33 1/3 rev/m so
the frequency 33.33/60=0.55 Hz
then w=2*π*0.55=3.45 rad/s
Finally the centripetal acceleration at differents radii results equal:
r= 0.05 m ac=3.45^2*0.05=0.50 m/s^2
r=0.1 ac=3.45^2*0.1=1.20 m/s^2
r=0.14 ac=3.45^2*0.14=1.66 m/s^2
Answer:
The tomato won't hit the car
Explanation:
According to the statement, the car moves at constant speed behind the truck fully loaded with tomatoes, and in the same direction. When a tomato falls from the top of the truck, it should not hit the car as the tomato falls due to the force of gravity, while horizontally has the same speed and in the same direction as the truck. So we assume that the tomato will fall to the road without touching the car.
Have a nice day!
The Beams And Joints That Hold It .