1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
KATRIN_1 [288]
4 years ago
7

Which method should be used to determine which type of natural event produces the greatest number of sand dunes?

Physics
1 answer:
jeka944 years ago
5 0

Answer:

Stabilizing dunes involves multiple actions. Planting vegetation reduces the impact of wind and water. Wooden sand fences can help retain sand and other material needed for a healthy sand dune ecosystem. Footpaths protect dunes from damage from foot traffic.

Explanation:

You might be interested in
g If the interaction of a particle with its environment restricts the particle to a finite region of space, the result is the qu
Travka [436]

Answer:

the result is the quantization of __Energy__ of the particle

Explanation:

3 0
4 years ago
Acceleration problem <br> Show work plz
Dennis_Churaev [7]

Answer:

The answer to your question is: vo = 25 m/s

Explanation:

data

a = -7.5 m/s²

d = 42 m

vf = 0 m/s

vo = ?

Formula

vf² = vo² - 2ad

Substitution

0² = vo² - 2(7.5)(42)

We clear vo from the equation

vo² = 2(7.5)(42)  

vo² = 630               simplifying

vo = 25 m/s            result

3 0
3 years ago
Helppp pls yes or no question
svp [43]

Answer:

yes, should be

Explanation:

This is a hard yes or no question becuase the amplitudes are the same height but in different beating orders.

7 0
3 years ago
Read 2 more answers
An unstrained horizontal spring has a length of 0.39 m and a spring constant of 350 N/m. Two small charged objects are attached
Vera_Pavlovna [14]

Answer:

A) The possible algebraic signs will either be both positive (+) or both negative (-) charged since the 2 objects are repelling each other to stretch the string.

B) Magnitude of charges = 1.206 × 10^(-6) C

Explanation:

We are given;

Spring constant;k = 350 N/m

Spring length;L = 0.39 m

Stretched length of spring;x = 0.022 m

A) The spring stretches by 0.022m. Therefore, the total force is (350 × 0.022) N = 7.7N. The charged objects will either be both positive (+) or both negative (-) charged since they are repelling each other to stretch the string.

B) Force (F) required to stretch spring is given by the formula;

F = kx

Thus:

F = (350 × 0.022)

F = 7.7 N

Now, if we assume point charges, then the distance (r) between them will be given as:

r = (0.39 + 0.022) = 0.412 m

Coulomb's Law has a formula:

F = k(q1×q2)/r²

where k is coulomb's constant = 8.99 × 10^(9) Nm²/C²

Making q1 × q2 the subject, we have;

(q1 × q2) = Fr²/k = 7.7 × 0.412²/(8.99 × 10^(9))

(q1 × q2) = 14.54 × 10^(-11) C

We are told that both charges are equal, thus; |q1| = |q2|

So;

q = √(14.54 × 10^(-11)) = 1.206 × 10^(-6) C

6 0
3 years ago
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
Other questions:
  • A girls walks 4 steps forward and then 3 steps backward. The girls distance walked is _________ steps and her displacement is __
    15·2 answers
  • How much time would it take for the sound of thunder to travel 1,500 meters if sound travels at a speed of 330 m/sec?
    12·2 answers
  • Can fatigue seriously impair driving ability
    10·2 answers
  • A man walks 18m East then 9.5 North. What is the direction of his displacement?​
    10·1 answer
  • The ice sheet on antarctica has uniform depth true or false
    15·1 answer
  • Planet with the most extreme temperature range
    13·1 answer
  • Where did all the golden carals go?
    9·1 answer
  • When are zeros significant when found to the trailing (to the right) of the decimal point?
    7·1 answer
  • ASAP Even though the force exerted on each object in a collision is the same strength, if the objects have different masses, the
    5·1 answer
  • 5. How much does a 20 m x 10 m x 8 m swimming pool filled with water weigh? Assume that water has a density of 62 kg/m'.​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!