Answer: 1.137*10^7 Btu/h.
Explanation:
Given data:
Efficiency of the plant = 4.5percent
Net power output of the plant = 150kw
Solution:
The required collection rate
QH = W/n
= 150/0.045 * 0.94782/ 1 /60 */60 Btu/h.
= 3333.333 *3412.152Btu/h.
= 11373840 Btu/h
= 1.137*10^7 Btu/h.
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.
Answer:
The invention of the pendulum-driven ___<u>clocks</u>___ in the 1600s paved the way for a new industrial era.
i believe the correct answer is c but i’m sorry if i’m not correct
Answer:
Ensure that all material and energy inputs and outputs are as inherently safe and benign as possible. Minimize the depletion of natural resources. Prevent waste. Develop and apply engineering solutions while being cognizant of local geography, aspirations, and cultures.Green engineering is the design, commercialization, and use of processes and products that minimize pollution, promote sustainability, and protect human health without sacrificing economic viability and efficiency.The goal of environmental engineering is to ensure that societal development and the use of water, land and air resources are sustainable. This goal is achieved by managing these resources so that environmental pollution and degradation is minimized.
Explanation:i helped