Based on the calculations, the magnitude (a) of it's total acceleration is equal to 2.71 m/s².
<u>Given the following data:</u>
- Angle of inclination = 10°.
- Radius of curvature, r = 40 meters.
- Acceleration of the minivan, A = 1.8 m/s².
- Initial velocity, u = 0 m/s (since it's starting from rest).
<h3>How to determine the magnitude (a) of it's total acceleration?</h3>
First of all, we would determine the final velocity of the minivan by applying the first equation of motion as follows:
V = u + at
V = 0 + 1.8 × 5
V = 9 m/s.
Next, we would calculate the centripetal acceleration of this minivan:
Ac = V²/r
Ac = 9²/40
Ac = 2.025 m/s².
Now, we can determine the magnitude (a) of it's total acceleration:
a = √(Ac² + A²)
a = √(2.025² + 1.8²)
a = 2.71 m/s².
Read more on acceleration here: brainly.com/question/24728358
#SPJ1
Answer:
hello your question is incomplete attached below is the missing diagram to the question and the detailed solution
Answer : principal stresses : 0.82 MPa, -33.492 MPa
shear stress = 17.157 MPa
∅ = 9.09 ≈ 10°
Explanation:
The principal stress ( б1 ) = 0.82 MPa
( б2 ) = -33.492 MPa
The shear stress = 17.157 MPa
∅ = 9.09 ≈ 10°
attached below is the detailed solution and the Mohr's circle
Answer:
A blizzard
Explanation:
You could be trapped in your car for days
Answer:
No.
Explanation:
The Coefficient of Performance of the reversible heat pump is determined by the Carnot's cycle:



The power required to make the heat pump working is:


The heat absorbed from the exterior air is:


According to the Second Law of Thermodynamics, the entropy generation rate in a reversible cycle must be zero. The formula for the heat pump is:




Which contradicts the reversibility criterion according to the Second Law of Thermodynamics.