Answer:
Explanation:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
On left side of periodic table atoms of metals are more reactive by loosing the electrons or we can say metals are more reactive by loosing the electrons so their reactivity increase down the group because of easily removal of electrons.
On right side of periodic table atoms of nonmetals are more reactive by gaining the electrons. As we move down the group nuclear attraction becomes smaller because of shielding thus electron are less attracted by nucleus and reactivity decreases.
Answer:
To calculate the number of atoms in a sample, divide its weight in grams by the amu atomic mass from the periodic table, then multiply the result by Avogadro's number: 6.02 x 10^23. Set up Equation Express the relationship of the three pieces of information you need to calculate the number of atoms in the sample in the form of an equation.
The hybrid orbital of this molecule is
. Hence, option C is correct.
<h3>What is hybridisation?</h3>
Hybridization is defined as the concept of mixing two atomic orbitals to give rise to a new type of hybridized orbitals.
In this compound,
a hybrid orbital makes I-O bonds. Due to
hybridization iodate should have tetrahedral geometry but because of the presence of lone pair of electrons the shape of
the ion is pyramidal.
The hybrid orbital of this molecule is
. Hence, option C is correct.
Learn more about hybridisation here:
brainly.com/question/23038117
#SPJ1
Answer: D, notify instructor .
Explanation: common sense love