Answer:
I think that As is larger
Answer:
<h2>127.57 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>127.57 moles</h3>
Hope this helps you
Answer:
Because kinetic energy is proportional to the velocity squared, increases in velocity will have an exponentially greater effect on translation kinetic energy. Doubling the mass of an object will only double its kinetic energy, but doubling the velocity of the object will quadruple its velocity.
Hey there!:
ΔTf = Kf * m
Molar mass glucose = 180 g/mol
number of moles glucose:
n = mass of solute / molar mass
n = 21.5 / 180
n = 0.119 moles glucose
Amount of solvent in kg = 255/1000 = 0.255 Kg
Molality = number of moles / solvent
m = 0.119 / 0.255
m = 0.466 moles/kg
Kf for water = - 1.86 ºC/*m
Therefore:
ΔTf = Kf * m
ΔTf = (-1,86) * 0.466
ΔTf = -0.86676 ºC
hope this helps!
Answer:
If 1000. mL of water freezes, which of the following is a reasonable approximation for the volume of the resulting ice?
Group of answer choices
1000. mL
961 mL
1040 mL
Explanation:
Ice is fewer denser than water.
The reason is the volume occupied by the same mass of ice with water is more than the volume occupied by water. Ice has more empty space within it.
Due to this reason, ice floats on water.
When 1000ml of water freezes to ice then its volume is greater than water.
Among the given options the correct answer is 1040 mL .