Answer:
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ is 4.11 × 10⁻³ grams
Explanation:
The number of particles in one mole of a substance id=s given by the Avogadro's number which is approximately 6.023 × 10²³ particles
Therefore, we have;
One mole of Cl₂ gas, which is a compound, contains 6.023 × 10²³ individual molecules of Cl₂
3.491 × 10¹⁹ molecules of Cl₂ is equivalent to (3.491 × 10¹⁹)/(6.023 × 10²³) = 5.796 × 10⁻⁵ moles of Cl₂
The mass of one mole of Cl₂ = 70.906 g/mol
The mass of 5.796 × 10⁻⁵ moles of Cl₂ = 70.906 × 5.796 × 10^(-5) = 4.11 × 10⁻³ grams
Therefore;
The mass of 3.491 × 10¹⁹ molecules of Cl₂ of Cl₂ = 4.11 × 10⁻³ grams.
The element that will have the lowest electronegativity is an element with a small number of valence electrons and a large atomic radius.
Electronegativity of an element is the ability or power of that element in a molecule to attract electrons to its Valence electrons. The following are the properties of electronegativity:
- It increases across a period from left to right of the periodic table,
- It decreases down the periodic table groups
- Group 1 elements are the least (lowest) electronegative elements. These elements have the lowest valence electrons with a large atomic radius.
- Group 7 elements are the most electronegative elements.
Atomic radius of elements increase down a group because of a progressive increase in the number of shells occupied by electrons which increases the size. But it decreases across a period because electrons are accommodated within the same shell leading to greater attraction by the protons in the nucleus.
Learn more about electronegativity of elements here:
brainly.com/question/20348681
Answer:
40.3 for the unit that represents the minimum amount of magnesium oxide I beilieve.
Explanation:
Magnesium atoms are heavier than oxygen atoms, so we expect more than 50% of magnesium in the weight composition. Taking just one atom of Mg and one atom of O you will get a mass of 16.0 + 24.3 = 40.3.
Hope this helps! Please tell me if you have any questions :))