Answer:
Nuclear energy comes from splitting atoms in a reactor to heat water into steam, turn a turbine and generate electricity.
Explanation:
Ninety-five nuclear reactors in 29 states generate nearly 20 percent of the nation's electricity, all without carbon emissions because reactors use uranium, not fossil fuels.
// have a great day //
Answer:
10.78 → 4 significant figures, pH = 10.78 → [H⁺] = 1.66ₓ10⁻¹¹ M
6.78 → 3 significant figures, pH = 6.78 → [H⁺] = 1.66ₓ10⁻⁷ M
0.78 → 2 significant figures, pH = 0.78 → [H⁺] = 0.166 M
pH always can be expressed by at least 4 significant figures. The [H⁺], can be expressed by, at least 3 significant figures
Explanation:
Significant figures are the numbers of a measurement that have certainty plus a doubtful number (it is associated with the uncertainty in the measurement). For example, if we measure a paper with a ruler and the ruler measures up to centimeters we can say that the paper is 7.5 cm long, with which we know that the paper is 7 cm + 0.5 cm which we associate with uncertainty. In this case we talk about two significant figures. If the sheet measured 7.57 cm we would already be talking about a more precise measurement and in this case with 3 significant figures.
10.78 → 4 significant figures
6.78 → 3 significant figures
0.78 → 2 significant figures
To determine [H⁺], we apply 10^-pH
10⁻¹⁰°⁷⁸ = 1.66ₓ10⁻¹¹ M
10⁻⁶°⁷⁸ = 1.66ₓ10⁻⁷ M
10⁻⁰°⁷⁸ = 0.166 M
Answer:
A).
Strontium Sulphate is soluble
From the stoichiometry of the reaction, 1.4 * 10^-3 g is produced.
<h3>What mass of water is produced?</h3>
The equation of the reaction is written as; CO2 + 2LiOH → Li2CO3 + H2O. This can help us to apply the principle of stoichiometry here.
Thus;
Number of moles of CO2 = 0.00345 g/44 g/mol = 7.8 * 10^-5 moles
If 1 mole of CO2 produced 1 mole of water
7.8 * 10^-5 moles of CO2 produced 7.8 * 10^-5 moles of water
Mass of water produced = 7.8 * 10^-5 moles * 18 g/mol = 1.4 * 10^-3 g
Learn ore about stoichiometry:brainly.com/question/9743981
#SPJ1
Compounds that has two elements on the formula can be bonded by ionic or covalent bond. If the compound is a metal and a non-metal then it will be ionic bonding. However, when it involves two non-metals, then it will have covalent bonding.