First, we have a change in the velocity from 85 to 164 m/s in 10 sec.
Then, we calculate the <u>acceleration </u>as:

Hence we need to calculate the velocity of the space vehicle at t = 2 sec using the first equation of motion:

Then, using the second equation of motion to calculate the distance:


If you apply a little bit of force, one will move easier than the other since it is lighter.
Answer:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field, direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
Explanation:
The magnetic force on a free moving charge depends on the velocity of the charge and the magnetic field and direction of the force is given by the right hand rule. While gravitational depends on the mass and distance of the moving particle and electric forces depends on the magnitude of the charge and distance of separation.
The magnetic force is given by the charge times the vector product of velocity and magnetic field. While gravitational force is given by the square of the particle mass divided by the square its distance of separation. Also electric forces is given by the square of the charge magnitude divided by the square its distance separation.