Answer:
S = V t where S is the horizontal distance traveled
1/2 g t^2 = H where H is the vertical distance traveled
t^2 = 2 H / g
V^2 = S^2 / t^2 = S^2 g / (2 H) combining equations
tan theta = H / S
V^2 = S g / (2 tan theta)
Using S = L cos theta
V^2 = L g cos theta / (2 tan theta)
Giving V in terms of L and theta
Answer:
Explanation:
To convert gram / centimeter³ to kg / m³
gram / centimeter³
= 10⁻³ kg / centimeter³
= 10⁻³ / (10⁻²)³ kg / m³
= 10⁻³ / 10⁻⁶ kg / m³
= 10⁻³⁺⁶ kg / m³
= 10³ kg / m³
So we shall have to multiply be 10³ with amount in gm / cm³ to convert it into kg/m³
2.33 gram / cm³
= 2.33 x 10³ kg / m³ .
Answer:
0.5639m
Explanation:
For a young double slit experiment the expression below gives the angular separation for m dark fringe having slit width d and wavelength λ
=sin⁻¹(mλ/d)
mλ /d =y/L
for the first order,
y= mλL/d
For ratio separation y₀/yD=1 and d= 1
y₀/yD= [mλ ₀L₀/d]/[mλD.LD./d]
1=λ ₀L₀/λD.LD.
λD.LD= λ ₀L₀
L₀= λD.LD/ λ ₀..............(1)
Then substitute the given values into (1) we have
L₀=471 *0.497/611
= 0.3831m
Distance by which the screen has to be moved towards the slit is
LD- Lo
0.947-0.3831= 0.5639m
Answer:
ball hit the ground from her feet is 1.83 m far away
Explanation:
given data
speed = 5.3 m/s
angle = 12°
height = 1 m
to find out
how far from her feet ball hit ground
solution
we consider here x is horizontal component and y is vertical component
so in vertical
velocity will be = v sin12
vertical speed u = 5.3 sin 12 = 1.1 m/s downward
and
in horizontal , velocity we know v = 5.3 m/s
so from motion of equation
s = ut + 0.5×a×t²
s is distance t is time a is 9.8
put all value
1 = 1.1 ( t) + 0.5×9.8×t²
solve it we get t
t = 0.353 s
and
horizontal distance is = vcos12 × t
so horizontal distance = 5.3×cos12 × ( 0.353)
horizontal distance = 1.83 m
so ball hit the ground from her feet is 1.83 m far away