Answer: 8
Step-by-step explanation: Speed is distance/time
18/3 = 6 miles per hour running
18/2 = 9 miles per hour biking
3 hour bike = 27 miles
1.50 hour run (0.50 because 30 minutes is half of an hour) = 9 miles
27 + 9/3 + 1.50 = 36/4.5 or 8
Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
<h3>How to determine how many bead of each type of bracelets and necklaces should Christy make to maximize his profit?</h3>
The given parameters can be represented in the following tabular form:
Bracelet (x) Necklace (y) Total
Labor (hour) 0.5 0.75 40
Profit 10 18
From the above table, we have the following:
Objective function:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
Because she wants to make at least 30 bracelets, we have:
x >= 30
So, we have:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
x >= 30
Express x >= 30 as equation
x = 30
Substitute x = 30 in 0.5x + 0.75y <= 40
0.5 * 30 + 0.75y <= 40
This gives
15 + 0.75y <= 40
Subtract 15 from both sides
0.75y <= 30
Divide by 0.75
y <= 40
Hence, Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
Read more about maximizing profits at:
brainly.com/question/13799721
#SPJ1
Answer:
314.96
586.74
Step-by-step explanation:
Answer:
here i finished!
hope it helps yw!
Step-by-step explanation:
The doubling period of a bacterial population is 15 minutes.
At time t = 90 minutes, the bacterial population was 50000.
Round your answers to at least 1 decimal place.
:
We can use the formula:
A = Ao*2^(t/d); where:
A = amt after t time
Ao = initial amt (t=0)
t = time period in question
d = doubling time of substance
In our problem
d = 15 min
t = 90 min
A = 50000
What was the initial population at time t = 0
Ao * 2^(90/15) = 50000
Ao * 2^6 = 50000
We know 2^6 = 64
64(Ao) = 50000
Ao = 50000/64
Ao = 781.25 is the initial population
:
Find the size of the bacterial population after 4 hours
Change 4 hr to 240 min
A = 781.25 * 2^(240/15
A = 781.25 * 2^16
A= 781.25 * 65536
A = 51,199,218.75 after 4 hrs
Answer:
-3
Step-by-step explanation: