The type of energy that depends on position is called
kinetic energy
Its simple dominant and recessive inheritance patterns and organism would need two recessive alleles(rr) for the trait to be expressed but only one dominant allele for that trait to be expressed (RR or Rr) however in the case of co-dominant alleles the heterozygous state (Rr) would produce a third phenotype rather that the dominant phenotype.
inertia is the answer!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a. The speed of the pendulum when it reaches the bottom is 0.9 m/s.
b. The height reached by the pendulum is 0.038 m.
c. When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
<h3>Kinetic energy of the pendulum when it reaches bottom</h3>
K.E = 100%P.E - 18%P.E
where;
K.E(bottom) = 0.82P.E
K.E(bottom) = 0.82(mgh)
K.E(bottom) = 0.82(1 x 9.8 x 0.05) = 0.402 J
<h3>Speed of the pendulum</h3>
K.E = ¹/₂mv²
2K.E = mv²
v² = (2K.E)/m
v² = (2 x 0.402)/1
v² = 0.804
v = √0.804
v = 0.9 m/s
<h3>Final potential energy </h3>
P.E = 100%K.E - 7%K.E
P.E = 93%K.E
P.E = 0.93(0.402 J)
P.E = 0.374 J
<h3>Height reached by the pendulum</h3>
P.E = mgh
h = P.E/mg
h = (0.374)/(1 x 9.8)
h = 0.038 m
<h3>when the pendulum stops</h3>
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Thus, the speed of the pendulum when it reaches the bottom is 0.9 m/s.
The height reached by the pendulum is 0.038 m.
When the pendulum no longer swing at all, all the kinetic energy of the pendulum has been used to overcome frictional force.
Learn more about pendulum here: brainly.com/question/26449711
#SPJ1
Time is being measured in days here so if you want to calculate the rate of increase after one day, substitute 1 for t in your rate equation:
dB/dt = 0.677598 cos(1.232(1))
dB/dt = 0.22