Answer:
c. length of the wall or column and the rate of placement of the concrete
Explanation:
when designing for wall and column form-works, it is of utmost important to know the length of the wall and the type of concrete placement to be used.
Concrete placement has methods and precaution to be taken when doing the form work
if the concrete placement is manually (hand or funnel) the form work height should not be more than 1 m to enable easy compaction and vibration of concrete in the form.
Also, if the form work length is too long and it is not well reinforced, it tends to burg if the force apply during concrete placement or during vibration is much.
Answer:
An object responds to a force by tending to move in the direction of that force
Explanation:
The inertia of a body can be defined with the help of Newton's second law
F = m a
Where F is the applied force, a is the acceleration of the body and m is the mass
the force and the acceleration are vectors that point in the same direction and m is a scalar constant that relates the two vectors, this scalar constant is called masses and it measures the resistance of the bodies to the change of motion.
From the previous statement we see that the statement that best describes inertia is:
An object responds to force by tending to move in the direction of the force.
Answer:
0.5
Explanation:
because it is V uwbsusvegwjosnfvehdbuxbdusndgdghqbwbwbbeuehdbdhdhdhdudhdhdudhdnskowoqllqlqlqnebe
Answer: weight on Jupiter = 869.75 N
mass on Earth = mass on Jupiter = 35.5 Kg
Explanation:
W = mg
W = weight
m = mass
g = gravitational acceleration [ on the Earth, g₁ = 9,8 N/kg ]
On the Earth,
G₁ = m x g₁ = 347,9 N
On the Jupiter,
G₂ = mg₂
mass on the Earth = mass on the Jupiter !
m = G₁ : g = 347.9 N : 9,8 N/kg = 35.5 kg
G2 : G1 = 2.5
G₂ = 2,5 G₁ = 2,5 x 347.9 N = 869,75 N