<span>The intensity of an earthquake is dependent on one's proximity to the focus of the quake, also called the "epicenter" and is based on observations of the shaking of the ground on humans, structures, and the natural landscape.</span>
The speed of light is: c
= 3x10^8 m/s <span>
or
c = 186,000,000 miles/sec = 1.86x10^8 mi/s
1 furlong = 0.125 mile
1 fortnight = 2 weeks(7d/wk)(24h/d)(3600s/h)
= 1209600s = 1.2096x10^6 s
Therefore,
c =1.86x10^8 mi/s(1furl/0.125mi)(1.2096x10^6s/fort)
<span>c = 18x10^14 furlong/fortnight = 18x10^8 Mfurlong/fortnight</span></span>
Answer:
Explanation:
a )
We shall apply the concept of impulse .
Impulse = force x time = change in momentum
= 5 x 4 = 2 ( V - 3 ) , where V is final velocity of the object
20 = 2V - 6
V = 13 m /s
b )
Impulse applied = - 7 x 4 = - 28 kg m/s ( negative as direction of force is opposite motion )
If v be the final velocity
2 x 3 - 28 = 2 v ( initial momentum - change in momentum = final momentum )
- 22 = 2v
v = - 11 m /s
object will move with 11 m /s in opposite direction .
As these are distances created by moving in a straight line, using a trigonometric analysis can solve the missing single straight-line displacement. Looking at the 48m and 12m movements as legs of a triangle, obtaining the hypotenuse using the pythagorean theorem will yield us the correct answer.
This is shown below:
c^2 = 48^2 + 12^2
c = sqrt(2304 + 144)
c = sqrt(2448)
c = 49.48 m
To obtain the angle at which Anthony walks 49.48, we obtain the arc tangent of (12/48). This is shown below:
arc tan (12/48) =14.04 degrees.
Therefore, Anthony could have walked 49.48 m towards the S 14.04 W direction.
<span>work =V*Q
=12*50*10^-6
The total work done will be equal to
work = V.Q
which means
w= 12 . 50.10^-6
Hence,
w= 0.0006 J</span>