1. he traveled a total of 24 miles
2. peter is not moving between 10 and 30 minutes
To determine the diameter of the earth in metres first multiply the original value by 2.
6378 X 2 = 12 756 km.
Then convert km - m
1 km = 1000 m
12 756 km = ? m
12 756 • 1000 = 12 756 000 = 12 756 000 m or 1.2756 X 10 ^ 7 m
The final solution for the diameter is 1.2756 X 10 ^ 7 m.
a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:

Answer:
v₁ = 2.48m/s, v₂ = 0.02m/s
Explanation:
Momentum p must be conserved. p = mv
1) First person throwing the snow ball. The momentum before the throw:
p = (65kg + 0.045kg) * 2.5 m/s
The momentum after the throw:
p = 65kg * v₁ + 0.045kg * 30m/s
Solving for the velocity v₁ of person 1:
v₁ = ((65kg + 0.045kg) * 2.5 m/s - 0.045kg * 30m/s) / 65kg = 2.48m/s
2) Second person catching the ball. The momentum before the catch:
p = 0.045kg * 30m/s + 60kg * 0m/s
The momentum after the catch:
p = (60kg + 0.045kg) * v₂
Solving for velocity v₂ of person 2:
v₂ = 0.045kg * 30m/s / (60kg + 0.045kg) = 0.02 m/s
Answer:
True
Explanation:
The angular momentum around the center of the planet and the total mechanical energy will be preserved irrespective of whether the object moves from large R to small R. But on the other hand the kinetic energy of the planet will not be conserved because it can change from kinetic energy to potential energy.
Therefore the given statement is True.