Answer:
The correct answer is:
a) remain where it is released
Explanation:
The concept of density seeks to measure the weight of an object in relation to its size. It is the measure of how packed together the particles of that object are. An object placed in a liquid displaces a certain volume of the liquid, based on the relative density of the object and the liquid.
If an object is less dense than a liquid in which it is placed, it displaces a smaller volume of the liquid than its volume, hence only some part of the object will be seen to be under the liquid, the other part will float.
If an object is denser than the liquid in which it is placed, it displaces a larger volume of the liquid than its own volume, making the object to sink and is submerged, sometimes to the bottom of the liquid, but mostly below the point at which it was released.
Finally, if the density of an object and the liquid into which it is submerged is the same. the object's mass per unit volume is the same as the liquid's mass per unit volume, hence the weight and force created due to density will balance and cancel each other out hence making the object to remain where it was submerged.
V=IR
60-V
The current that passes through a 10-ohm resistor = I
I=60/10
6 amperes
Explanation:
When doing this calculation manually, the formula of conversion that you need to use is yd / 1.0936 = m and this is the same formula used by the online calculator. For instance, 2yd = 1.83m and 15yd = 13.72m.
So 200 yards is (200 / 1.0936)
which is 182.88 Meters
Hope it helps..
Answer:
Explanation:
(a) The force of gravity is called an attractive force because it is the force (although weak) in which a planetary body or matter uses to attract an object towards itself.
(b) Yes, it does and the formula for force of gravity between any two object is
F = G
where m1 and m2 are masses of the first and second object respectively
r is the distance between the center of the two masses
G is the gravitational constant
Yes, yes, we know all of that. It certainly took you long enough to
get around to asking your question.
If
a = (14, 10.5, 0)
and
b = (4.62, 9.45, 0) ,
then, to begin with, neither vector has a z-component, and they
both lie in the x-y plane.
Their dot-product a · b = (14 x 4.62) + (10.5 x 9.45) =
(64.68) + (99.225) = 163.905 (scalar)
I feel I earned your generous 5 points just reading your treatise and
finding your question (in the last line). I shall cherish every one of them.