The gravitational potential energy
gpe = mgh

B Ik it all just know who they’ll you
<span>you can look at magnesium, it can react with oxygen to form oxides. (chemical) it is malleable and a solid at room temperature. (physical)
</span><span>to measure its density, the mass and volume can be worked out and from this density too. look up the equation, it is quite easy :)
</span><span>physical changes -- it can be melted, and oxidized
</span><span>the chemical changes of oxidation magnesium looses electrons to form oxides, this is a chemical reaction- chemical change..--- use to get the density use (rho) or density D = M/V</span>
Answer:
3secs
Explanation:
Given the following parameters
height H= 81.3m
Velocity v = 12.4m/s
Required
Time it take to reach the ground
Using the equation of motion
H = ut+1/2gt²
81.3 = 12.4t + 1/2(9.8)t²
81.3 = 12.4t + 4.9t²
4.9t² + 12.4t - 81.3 = 0
Using the general formula to find t
t = -12.4±√12.4²-4(4.9)(-81.3)/2(4.9)
t = -12.4±√153.76+1593.48/2(4.9)
t = -12.4±√1747.24/9.8
t = -12.4+41.8/9.8
t = 29.4/9.8
t = 3secs
Hence it took 3secs to reach the ground
There are a variety of waves from light waves to mechanical waves. Waves can exhibit different effects like the Doppler Effect.
All light waves behave in a similar manner. They either get transmitted, reflected, absorbed, refracted, polarized, diffracted, or scattered based off of the composition of the object and the wavelength of the light.
According to Wikipedia, “One important property of mechanical waves is that their amplitudes are measured in an unusual way, displacement divided by (reduced) wavelength. When this gets comparable to unity, significant nonlinear effects such as harmonic generation may occur, and, if large enough, may result in chaotic effects.” Mechanical waves are chaotic and its “amplitudes” are measured unusually.
Diffraction is when light bends around objects and spread after passing out through small openings. “Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic waves such as light that the eye can see.”-Wikipedia. Here is the formula to Diffraction: <em>d </em>sin <em>θ </em>= <em>nλ</em>
Doppler effect can occur for any type of wave like sound or water waves. An example of this is when we hear a police car with its sirens on, coming towards us. The closer you are to the police car, the higher the wavelength, but the farther away you are, the lower the wavelength.
<em />