Answer:
Yes the body will receive a dangerous shock in both cases.
Explanation:
Different parts of the body has different resistance. skin has the high resistance as compared to other organs of the body.
Dry skin has high resistance than wet skin this is because water is relatively good conductor of electricity, it adds parallel path to the current flow and hence reduces skin resistance.
Dry hands body has approximately 500 kΩ resistance and if 120 V electricity supply current received will be:
I = V/R= 120/ 500*10^3
I= 0.24 mA
Even the current seems is much lower than the safe zone but this is the case in case of DC voltage in case of AC voltage the body will receive a shock this is because the skin pass more current when the voltage is changing i.e. AC.
Similarly for wet hands body resistance is 1 kΩ. so the current through the body seems to be:
I = 120 / 1000
I = 12 mA
The current is higher than safe zone so the body will receive a dangerous shock.
Answer:
Space technology is technology developed by space science for use in astronautics, for purposes such as spaceflight or space exploration. Space technology includes spacecraft, satellites, space stations, and support infrastructure equipment, and procedures and space warfare.
Answer:
3.95979 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Here 


Initial velocity of the puck should be 3.95979 m/s
1 Electrical Potential Energy, separating two charged plates will store energy as the plates want to return to their original position.
<span>2 Spring or Elastic can be stretched to store energy as it wants to return to rest </span>
<span>3 Gravitational energy is stored by moving something (ball or pendulum are both examples of this) against a gravity gradient (lifting an object) that wants to fall back down. </span>
Answer:
Rug burn, Indian burn done to you by a friend, friction from the road causes your car to accelerate at a slower rate, The cylinder heads in an engine, When trying to move a heavy object across a rough surface
Explanation: