distance traveled by a uniformly accelerated bike is given as

here we know that



now we will have from above equation


so it will cover the total distance of 300 m
Answer:anion followed by cation
Explanation:
London is making in their room by the way I’m just using this as
Free pouts
Answer:
This depends on what angle they are approaching each other before they collided.The two simple cases are if they are running in the same direction or opposite direction from each other. For either case, use the conservation of momentum equation to solve: M_total*V_result = M1*V1 + M2*V2
Explanation:
Here are two possible solutions.
Head-on collision: M1=78, V1=8.5, M2=72, V2=-7.5 (that's negative because he's running the other way), M_total = 78+72 = 150, so V_result = (78*8.5 - 72*7.5)/150 = 0.82 m/s. Sanity check, they weigh about the same and so most of their velocity should cancel out.
Running the same way: change the sign of V2 to positive so V_result = (78*8.5 + 72*7.5)/150 = 8.02 m/s. Sanity check, they weigh about the same and the resultant speed is between the two starting velocities.
<em>hope it helps:)</em>