Word equation - calcium + oxygen -> calcium oxide
Chemical equation - Ca + O2 -> CaO2
Hope this helps!
Answer:
C. CH3COOH, Ka = 1.8 E-5
Explanation:
analyzing the pKa of the given acids:
∴ pKa = - Log Ka
A. pKa = - Log (1.0 E-3 ) = 3
B. pKa = - Log (2.9 E-4) = 3.54
C. pKa = - Log (1.8 E-5) = 4.745
D. pKa = - Log (4.0 E-6) = 5.397
E. pKa = - Log (2.3 E-9) = 8.638
We choose the (C) acid since its pKa close to the expected pH.
⇒ For a buffer solution formed from an acid and its respective salt, we have the equation Henderson-Hausselbach (H-H):
- pH = pKa + Log ([CH3COO-]/[CH3COOH])
∴ pH = 4.5
∴ pKa = 4.745
⇒ 4.5 = 4.745 + Log ([CH3COO-]/[CH3COOH])
⇒ - 0.245 = Log ([CH3COO-]/[CH3COOH])
⇒ 0.5692 = [CH3COO-]/[CH3COOH]
∴ Ka = 1.8 E-5 = ([H3O+].[CH3COO-])/[CH3COOH]
⇒ 1.8 E-5 = [H3O+](0.5692)
⇒ [H3O+] = 3.1623 E-5 M
⇒ pH = - Log ( 3.1623 E-5 ) = 4.5
X it by the molar mass of tungsten
Some of the muscle attached to the skeleton is voluntary and may be used for movement.
Molar mass H₂O = 18.0 g/mol
number of moles :
1.0 / 18.0 => 0.055 moles
1 mole -------------- 6.02 x 10²³ molecules
0.055 moles -------- ? molecules
molecules = 0.055 x ( 6.02 x 10²³) / 1
molecules = 3.311x10²² / 1
= 3.311 x 10²² molecules
hope this helps!