Answer:
Carroll has spent his career studying how evolution occurs at the genetic level, pinpointing many of the molecular changes that lead to new traits and new species. Most of Carroll's discoveries have come to light by studying the common fruit fly Drosophila melanogaster, the workhorse of modern molecular genetics.
Have a great day!
1) -76.27
2)-119.47
3)-256.27
4)-87.07
Here’s the formula for the last one so you know how to do it. Hope this helps!!!
(a) 0.448
The gravitational potential energy of a satellite in orbit is given by:

where
G is the gravitational constant
M is the Earth's mass
m is the satellite's mass
r is the distance of the satellite from the Earth's centre, which is sum of the Earth's radius (R) and the altitude of the satellite (h):
r = R + h
We can therefore write the ratio between the potentially energy of satellite B to that of satellite A as

and so, substituting:

We find

(b) 0.448
The kinetic energy of a satellite in orbit around the Earth is given by

So, the ratio between the two kinetic energies is

Which is exactly identical to the ratio of the potential energies. Therefore, this ratio is also equal to 0.448.
(c) B
The total energy of a satellite is given by the sum of the potential energy and the kinetic energy:

For satellite A, we have

For satellite B, we have

So, satellite B has the greater total energy (since the energy is negative).
(d) 
The difference between the energy of the two satellites is:

Answer:
Explanation:
It’s because of gravitational potential energy, the higher the object is from the ground, the more potential energy due to gravity
Democritus was the ancient greek atoms.