Answer:
The average current I supplied to the cars motor is 0.225 Amperes.
Explanation:
The mass of the toy car is given as, m = 0.6 kg
The toy car operates at a steady speed of, v = 3.43 m/s.
It achieves the steady speed after a time, t = 5.69 seconds.
The total kinetic energy of the car is given by,
E =
= 0.5 × 0.6 ×
= 3.53 Joules
Since the efficiency of the motor is 30.6% = 0.306
The electrical energy equivalent is supplied to motor = .
The electrical energy is given by P × t = I × V × t = 11.54 Joules
P is the electric power where P = I × V where V is the voltage of the cell and is the average current, I.
Therefore we can write I × 9 × 5.69 = 11.54 Joules.
So the average current I = = 0.225 Amperes.
If two sources emit waves with the same wavelength and a constant phase difference ϕ, they are said to be coherent.
<h3>What is coherent source ?</h3>
- If the frequency and waveform of two wave sources are the same, they are coherent. Waves' optimal quality of coherence makes stationary interference possible.
- When the phase difference between two beams of light is constant, they are coherent; if the phase difference is random or changes, they are noncoherent.
- The concept of a superpositioning at the core of quantum physics and quantum computing is referred to as "quantum coherence." Quantum coherence specifically considers a scenario in which a wave property of an item is split in two and the two waves coherently interfere with one another.
- The interference visibility, which examines the size of the interference fringes in relation to the input waves, is an easy way to measure the degree of coherence; correlation functions provide a precise mathematical definition of the degree of coherence.
To learn more about coherent refer :
brainly.com/question/24768967
#SPJ4
Answer:
A horse pulls a cart, a person walks on the ground
Explanation:
Answer:
89.45 v/v
Explanation:
Let's take the data:
First draw the amplifier circuit.
After the circuit, the voltage division rule can be used to compute the parameters:
The input section is computed like this:
The output section is computed like this
The product A gives
A = A××
Computing gives output voltage = 89.45 v/v
The answer for this question is D