The ball can't reach the speed of 20 m/s in two seconds, unless you THROW it down from the window with a little bit of initial speed. If you just drop it, then the highest speed it can have after two seconds is 19.6 m/s .
If an object starts from rest and its speed after 2 seconds is 20 m/s, then its acceleration is 20/2 = 10 m/s^2 .
(Gravity on Earth is only 9.8 m/s^2.)
Answer:
A damped oscillation means an oscillation that fades away with time while Forced oscillations occur when an oscillating system is driven by a periodic force that is external to the oscillating system.
Explanation:
Damping is the reduction in amplitude (energy loss from the system) due to overcomings of external forces like friction or air resistance and other resistive forces. ... When a body oscillates by being influenced by an external periodic force, it is called forced oscillation.
<h2>
<em><u>Hope</u></em><em><u> </u></em><em><u>this</u></em><em><u> </u></em><em><u>helped</u></em><em><u> </u></em></h2>
<em><u>Welcome</u></em><em><u> </u></em>
Answer:
500J
Explanation:
there are many students who can not get answer step by step and in required time. so
there are a wats group where you can get your answer by trusted experts.
join this wats up group and be smart
Answer: Stage 1- Stars are born in a region of high density Nebula, and condenses into a huge globule of gas and dust and contracts under its own gravity. This image shows the Orion Nebula or M42 . Stage 2 - A region of condensing matter will begin to heat up and start to glow forming Protostars.
Explanation:
Answer:
The question is somewhat vague in that acceleration is not exactly defined:
Usually a = (v2 - v1) / t which would imply that
a = 32 / g = 32 / 9.8 = 3.27 the acceleration due to change in speed of the rocket
One can also say that the astronaut experiences an acceleration of 9.8 m/s^2 just by being motionless on the surface of the earth.
Then a = (32 - 9.8) / 9.8 = 2.27 due to the acceleration of the rocket
If we assume the first condition then
F = 65 kg * 3.27 * 9.8 m/s^2 = 2083 N